
Drag and Drop Processing With Python
and QT6

Demonstrating the Principle of Operational Laziness

Mark G.

Nov. 8, 2025

This presentation will look at how to write a program in the Python pro-
gramming language using a graphical user interface (GUI) library named
PySide6. Our example program will accept a string of text, usually an
HTTP link, and perform some sort of processing on said string. As part of
the architecture of the program, to increase generality and usefulness, we use
a shell (Bourne is the example) script which is used to hold the command
or commands processing the string. The python GUI program will call this
external program and capture its output. We will also take a brief look at
PyInstaller for creating a distributable, single executable. Tools used are
VSCode (open source edition) and Qt Widgets Designer.

Figure 1: The software we created

1

Contents

1 Introduction and Requirements 4

2 Development Environment 4
2.1 Open Source VSCode . 4
2.2 Qt Widgets Designer . 7

3 Languages and Libraries 7
3.1 Python 3.11 . 8

3.1.1 No Virtual Environment? . 8
3.2 PySide6 . 8
3.3 subprocess module . 9
3.4 Bourne Shell . 9

4 Code Patterns 9
4.1 Program Execution and Threading . 10

4.1.1 Workers . 10
4.1.2 Signals . 10
4.1.3 Other Signals . 11

5 Graphical User Interface 11

6 Our LazyLink Software 14
6.1 Main Program . 15
6.2 Widget Code . 16
6.3 Pasting Text and Drag and Drop . 21
6.4 Compute Code . 22
6.5 Progress Dialog . 25
6.6 Shell Code . 26

7 PyInstaller Tool 27

8 Conclusion 29

9 Resources 30

List of Figures

1 The software we created . 1
2 View of Code-OSS (open source VSCode) 6
3 View of the QT Designer 6 Program . 7
4 QT Designer 6 Main Window Creation . 12
5 QT Designer 6 Form→ View Python Code 13

2

6 QT Designer 6 Save Python Code . 13
7 Lazy Link Progress Dialog . 26

3

1 Introduction and Requirements

Our goal is to make it easier to do mundane processing that follows this set of ac-
tions:

1. Copy some text or a link that you’d like to do something with.

2. Edit the text if needed.

3. Run a command on the text.

4. Observe the command’s output.

5. Indicate success or failure.

As a general computer user it behooves me to be as lazy as possible. This goes double
for programmers and system administrators. To this end, I will encapsulate the above
numbered steps into a program, whose default action is to accept the text via drag
and drop, then immediately run the command and capture/display the output. The
program will also keep two temporary status lists indicating the success or failure of the
command’s action on the text.

From this point on, the steps “run the command and capture/display the output, indicate
status” will be referred to as processing.

The user will have an option to paste-and-edit, allowing for changes to the text before
processing. This use case requires a start button to begin processing after edits are
done.

If drag and drop is inconvenient, there is a paste-and-go option which immediately copies
the text from the paste buffer and starts processing.

2 Development Environment

We’ll use two programs in our development efforts. The first is the open-source version
of VSCode and the second is called Qt Widgets Designer.

2.1 Open Source VSCode

This software is installed using normal package manager idioms. We use the pkg com-
mand:

mv@think:~ % pkg install vscode

After its installation we can check out its information:

mv@think:~ % pkg info vscode

vscode-1.103.0

Name : vscode

4

Version : 1.103.0

Installed on : Mon Aug 11 17:51:40 2025 PDT

Origin : editors/vscode

Architecture : FreeBSD:14:amd64

Prefix : /usr/local

Categories : editors

Licenses : MIT

Maintainer : tagattie@FreeBSD.org

WWW : https://code.visualstudio.com/

Comment : Visual Studio Code - Open Source ("Code - OSS")

...

Annotations :

FreeBSD_version: 1403000

build_timestamp: 2025-08-11T06:58:54+0000

built_by : poudriere-git-3.4.2

...

repository : Poudriere

Flat size : 390MiB

Description :

VS Code is a type of tool that combines the simplicity of a code

editor with what developers need for their core edit-build-debug

cycle. It provides comprehensive editing and debugging support, an

extensibility model, and lightweight integration with existing tools.

Figure 2 shows a view of the VSCode interface.

5

Figure 2: View of Code-OSS (open source VSCode)

6

2.2 Qt Widgets Designer

The second is Qt Widgets Designer version 6. The purpose of this tool is to allow us to
graphically design the user interface and then save this design as a python module for
use in our program.

This program is part of the qt6-tools package and is installed as a dependency of
py311-pyside6-tools which itself is installed as a dependency of py311-pyside6.

Figure 3 shows a view of the Qt Widgets Designer interface.

Figure 3: View of the QT Designer 6 Program

The details of installing this on a Linux or Windows system are left as an exercise to
the student.

3 Languages and Libraries

We use the Python language for this project and some python libraries.

7

3.1 Python 3.11

This program was written using version 3.11 of python.

How do we refer to our version of python?

mv@think:~ % /usr/bin/env python3

env: python3: No such file or directory

mv@think:~ % /usr/bin/env python

Python 3.11.13 (main, Jul 6 2025, 04:01:02) Clang 19.1.7 on freebsd14

Type "help", "copyright", "credits" or "license" for more information.

>>>

mv@think:~ % /usr/bin/env python3.11

Python 3.11.13 (main, Jul 6 2025, 04:01:02) Clang 19.1.7 on freebsd14

Type "help", "copyright", "credits" or "license" for more information.

>>>

So we can be fairly relaxed and use the python command directly which is linked to
version 3.11.13. Alternatively, we can be more restrictive and use python3.11 as our
python command (which uses the same version). Note there is no python3 command on
this system.

The name of your python interpreter will depend on what operating system you are
using, of course.

3.1.1 No Virtual Environment?

In this project, I don’t use a python virtual environment. This is a FreeBSD specific
issue, since PySide6 wasn’t easily install-able into a virtual environment using pip. Some
needed ‘wheels’ of module dependencies could not be created / installed due to missing
platform (freebsd) support. This is annoying, and I would prefer a virtual environment,
but the PyInstaller program allows us to make a single stand-alone executable, making
the python environment requirements moot.

However, the PySide6 software can be installed system-wide using the pkg system.
A side benefit to installing the py311-pyside6 package and py311-pyside6-tools is
that many useful programs are installed as dependencies, in particular, Qt Widgets

Designer 6 and the Qt 6 libraries themselves.

3.2 PySide6

While there are a few graphical libraries to choose from, I chose PySide6, which uses Qt
version 6. This is a huge software suite and is tremendously well-documented.

8

I installed it as follows:

pkg install py311-pyside6 py311-pyside6-tools

These two packages install all the needed Qt 6 libraries and programs. Other operating
systems will have similar installation mechanisms.

The project’s home page is at Qt for Python1. Use it regularly and read the details of
the widgets and classes you are using.

3.3 subprocess module

We’ll use threads and create a completely separate process to run our computing work-
load. This avoids running into problems that the python interpreter has regarding locks
(the GIL in particular). New processes, if they are running a python program, use a
different instance of the interpreter than the one our main program uses.

To this end, we use the subprocess module’s Popen methodology for executing our
commands. It is flexible enough to allow us to run a shell command and to capture the
process’ output and exit code.

3.4 Bourne Shell

To enhance generality, the lazylink program uses a bourne shell command script named
ll command.sh (which stands for lazylink command). This is hard-coded in the main.py
program, but you may replace it by changing the variable in main.py:

If you want a different command/file name, change it here.

shell_command = ’’’./ll_command.sh’’’

The shell command is combined with the pasted text as its first argument and passed
to the subprocess module from within a worker thread.

4 Code Patterns

There are a number of code conventions, also know as patterns, used in this project.
Generally, we are loosely using a model-view-controller (MVC) pattern. This is an older
Object Oriented Design paradigm, but is worth mentioning.

The model aspect is implemented in the compute.py module, which, instead of us-
ing database functions typical in MVC patterns, it provides subprocess/compute func-
tions.

1https://doc.qt.io/qtforpython-6/index.html

9

https://doc.qt.io/qtforpython-6/index.html

The view aspect consists of the python code generated by the Qt Widget Designer
and encapsulates the graphical user interface functionality. Files: ui lazylink.py,
ui progress dialog.py

The controller aspect is implemented in the widget.py module, which contains all
the code for combining the GUI button presses with functions and compute processing.
Most of this code is comprised of methods attached to the main window’s widget.

4.1 Program Execution and Threading

In general, all executed programs have a single main thread. This thread runs the event
loop and it deals with button presses and menu actions. It does all the heavy lifting
when it comes to updating the GUI screen and controller actions such as receiving and
display the input and output via buttons or text boxes.

The programmer should add other threads to execute long running computations so that
they won’t interfere with the responsiveness or block the main thread. Threading is a
common part of GUI programs.

Our program will use a thread pool (QThreadPool) to manage and run new threads as
needed for our processing. The thread pool is created on our main window, in the class
called LazyLink within widget.py.

The threads we create are commonly referred to as workers.

4.1.1 Workers

As part of Qt’s architecture, it includes the QRunnable class which is basically a thread.
It works in conjunction with thread pools. It is what we use as a base class for our
Worker class. This can be seen in the compute.py module.

Our worker class is essentially a new thread that will communicate with the main thread
via signals.

4.1.2 Signals

Qt includes a signaling mechanism which we’ll use to tell our main program about the
progress and status of our compute workers. We use the Qt Signal class for this.

The recommended pattern for signals is to combine them into a single class that our
Worker class can use. To this end, in compute.py we create a WorkerSignals class and
give it as many Signal properties as we need.

Our system uses the following signals:

1. finished = Signal()

2. error = Signal(object) # Exception

10

3. result = Signal(object) # subprocess.CompletedProcess

4. output = Signal(str) # stdout

5. errors = Signal(str) # stderr

The argument to Signal is the type of data we can pass when the signal is emitted and
accepted by the connected function. The Qt architecture refers to the connected func-
tions as Slots, but that’s as far as I’ll go in mentioning them in this presentation.

We don’t actually use all of the signals in our program, but the examples I followed had
most of these. We use finished, error, output and result.

The errors signal could have been used if we didn’t absorb standard error (stderr)
into standard output (stdout) in our subprocess calls.

Our worker’s signals are connected in our main window’s start method when we create
a worker for use. They are each connected to a distinct main window method, since
they represent different outcomes or data from the thread’s subprocess.

NOTE: It is very important to never attempt to update the GUI using code running in
a worker thread. The application will crash mysteriously and be very difficult to debug.
This is why the signaling pattern implemented here is used.

The worker has this line to incorporate the signals it needs:

In Worker’s init

self.signals = WorkerSignals()

4.1.3 Other Signals

The above section 4.1.2 describes the signals we use for our threading communication.
They are the same conceptually as the otherwise ‘normal’ signals emitted by button
presses and other GUI elements.

However, when a button is created, it comes with many built-in properties and methods,
with several signals being among them. The most used button signal is clicked, which
we can connect to a function so as to do something useful.

These signal connections are typically setup in the main window initialization (in widgets.py).

5 Graphical User Interface

The program we use for designing the GUI (i.e. the view) is called Qt Widget Designer.
We can run it from the command line (and send it to the background) via:

% designer6 &

11

Figure 4: QT Designer 6 Main Window Creation

It is a complex program and has a bit of a learning curve, but there are many useful
tutorials on the ’net to get you started.

Once you’re happy with how your GUI looks and acts, you then save the GUI layout
as python code. Use the Form->View Python Code command to display the generated
python code for your GUI. Then use the Save command at the top of the python code
view to save the code to your program’s code directory.

Here are a few of my tips I learned from others:

1. Give your widgets names other than the default and use a naming convention. For
example, all line edit boxes have names starting with le and labels have names
starting with lb and so on. These conventions will make VSCode’s auto-complete
more useful when working with your widgets.

2. Never edit the generated python code for your GUI. Always make changes using
the GUI editor and regenerate the python code.

3. Create a skeleton copy of your layout with the button / text box names and place
it in a comment section in your main window widget for easy reference.

12

Figure 5: QT Designer 6 Form→ View Python Code

Figure 6: QT Designer 6 Save Python Code

The generated python code will have a main class that you must include as a base class
with your QMainWindow widget.

My main window’s class name is LazyLink and it has base classes of QMainWindow and

13

Ui MainWindow from the generated file which I named ui lazylink.py.

Here is a quick look at the top of the ui lazylink.py code:

% cat ui_lazylink.py|more

-*- coding: utf-8 -*-

##

Form generated from reading UI file ’lazylinkoKFMNM.ui’

##

Created by: Qt User Interface Compiler version 6.9.1

##

WARNING! All changes made in this file will be lost when recompiling UI file!

##

from PySide6.QtCore import (QCoreApplication, QDate, QDateTime, QLocale,

QMetaObject, QObject, QPoint, QRect,

QSize, QTime, QUrl, Qt)

from PySide6.QtGui import (QBrush, QColor, QConicalGradient, QCursor,

QFont, QFontDatabase, QGradient, QIcon,

QImage, QKeySequence, QLinearGradient, QPainter,

QPalette, QPixmap, QRadialGradient, QTransform)

from PySide6.QtWidgets import (QAbstractScrollArea, QApplication, QGridLayout, QGroupBox,

QHBoxLayout, QLabel, QLayout, QLineEdit,

QMainWindow, QPushButton, QScrollArea, QSizePolicy,

QStatusBar, QTextEdit, QVBoxLayout, QWidget)

class Ui_MainWindow(object):

def setupUi(self, MainWindow):

if not MainWindow.objectName():

MainWindow.setObjectName(u"MainWindow")

...

See the widgets.py file for the inclusion of this class in our program.

6 Our LazyLink Software

The software is slightly complicated, but there are common patterns that are used for
Qt GUI programs that we have followed.

I used many video tutorials and made extensive use of the PySide6 documentation
when writing this software. One cannot do without the documentation2 at Qt for

2https://doc.qt.io/qtforpython-6/index.html

14

https://doc.qt.io/qtforpython-6/index.html
https://doc.qt.io/qtforpython-6/index.html
https://doc.qt.io/qtforpython-6/index.html

Python.

It is frequently necessary to look up the classes and base classes to find out the properties
and methods that are provided for buttons, text boxes, dialogs and so on.

6.1 Main Program

The project uses the common file name of main.py to contain the main program func-
tionality: It has a common template structure when using PySide6 as our graphical
library. Mostly, this code is written once and rarely changed.

Below we see the use of the QApplication class to instantiate our program in a variable
named app. This app will partner with our main window widget and will then become
our event loop when we run app.exec().

#!/usr/bin/env python

Main program for the lazylink program.

Accept a paste, run a script.

#

Uses Qt 6 GUI stuff.

#

from PySide6.QtWidgets import QApplication

For command line arguments

import sys

import os

from widget import LazyLink

If you want a different command/file name, change it here.

shell_command = ’’’./ll_command.sh’’’

if __name__ == "__main__":

app = QApplication(sys.argv)

window = LazyLink(app, shell_command)

Start the app.exec event loop, report its status via sys.exit

sys.exit(app.exec())

This program can be executed as follows:

mv@think:~/.../pyprojects/droplink % python main.py

Multithreading with maximum 8 threads

On the other hand, since we have a bang-path (#!) statement shown as #!/usr/bin/env

15

https://doc.qt.io/qtforpython-6/index.html
https://doc.qt.io/qtforpython-6/index.html

python as the first line in main.py, we can try and run the program as ./main.py:

The example below shows us changing the main.py file to be executable (chmod +x)
after we receive a permission error.

mv@think:~/.../pyprojects/droplink % ./main.py

./main.py: Permission denied.

mv@think:~/.../pyprojects/droplink % chmod +x main.py

mv@think:~/.../pyprojects/droplink % ./main.py

Multithreading with maximum 8 threads

This is how we can execute the program as we iterate through debugging and feature
building.

At the end of the day, we’ll use PyInstaller (see section 7) to create a file named
lazylink, and that will be our project’s executable file name that we can distribute.

6.2 Widget Code

The code in widget.py controls the flow of our program and deals with button presses,
worker creation and execution, and the display of processing output and errors.

It has two main purposes, the first to prepare and display the GUI and the second
to declare all the functions (methods) that we’ll use to perform the program’s opera-
tions.

"""

fullLayout

gb_commandsBox

vCommandsLayout

hButtonsLayout

pb_pasteGoButton (paste activate startButton for processing)

pb_pasteEditButton (paste activate pastedLink for edit)

pb_startButton

pb_clearButton

le_pastedLink (default empty string)

gb_currentlyProcessing

lb_processingLinkValue (default "Nothing")

gb_successLink "Successfully retrieved:"

scrollArea, widget

te_successLog (default empty string) multiline textbox, no edit, scroll

gb__failedLink "Failed to retrieve:"

scrollArea, widget

16

te_failureLog (default empty string) multiline textbox, no edit, scroll

"""

import os

import sys

import time

from PySide6.QtCore import QThreadPool

from PySide6.QtWidgets import QMainWindow, QPushButton, QDialog, QDialogButtonBox

from PySide6.QtGui import QGuiApplication

from ui_lazylink import Ui_MainWindow

from ui_progress_dialog import Ui_dw_progressDialog

from compute import Worker

class LazyLinkProgress(QDialog, Ui_dw_progressDialog):

def __init__(self, parent=None):

super(LazyLinkProgress, self).__init__(parent=parent)

self.setupUi(self)

self.parent = parent

self.buttonBox.rejected.connect(self.close_dialog) # Close?

self.buttonBox.button(QDialogButtonBox.StandardButton.Reset).clicked.connect(self.reset_contents) # Reset?

def close_dialog(self):

print("Closing progress")

self.te_progressDialog.setText("")

def reset_contents(self):

print("Reset progress")

self.te_progressDialog.setText("")

class LazyLink(QMainWindow, Ui_MainWindow):

"""

Since this is our main program, we use QMainWindow coupled

with our custom GUI stuff we created with Qt Widget Designer.

We have to remember the names that were used in the designer

for things like buttons, text boxes and so on.

Important call to self.setupUi from Ui_MainWindow

should be noted.

"""

def __init__(self, app, shell_command=’./ll_command.sh’, parent=None):

super(LazyLink, self).__init__(parent=parent)

17

self.app = app

self.shell_command = shell_command

Some properties are specified via the UI import.

For example, the "paste and go" button has its ’default’

property set, and has the ’&G’ keyboard shortcut

set within the button text. It could be argued

that those settings should be stored here for documentation

purposes.

self.setupUi(self)

self.setWindowTitle("Lazy link processor")

We’ll use worker threads (QRunnable) in our pool (see start method).

self.threadpool = QThreadPool()

thread_count = self.threadpool.maxThreadCount()

Realistically, our design only uses one thread at a time.

print(f"Multithreading with maximum {thread_count} threads")

The .clicked.connect lines below allow us to link

what happens when a user clicks a button to the code

we want to run for that button.

self.pb_pasteGoButton.clicked.connect(self.paste_and_go)

self.pb_pasteGoButton.setCheckable(False)

self.pb_pasteEditButton.clicked.connect(self.paste_and_edit)

self.pb_startButton.clicked.connect(self.start)

self.pb_startButton.setCheckable(False)

self.pb_clearButton.clicked.connect(self.clear)

self.accepting_drop = False

We get our progress dialog ready. We’ll show it later in .start.

self.progress_dialog = LazyLinkProgress(parent=self)

"""

failbar = self.scrollArea_2.verticalScrollBar()

failbar.rangeChanged.connect(self.resize_scroll)

successbar = self.scrollArea.verticalScrollBar()

successbar.rangeChanged.connect(self.resize_scroll)

"""

self.show()

def dragEnterEvent(self, event):

18

self.accepting_drop = False

if event.mimeData().hasFormat("text/plain"):

event.acceptProposedAction()

self.accepting_drop = True

def dropEvent(self, event):

print(f"Dropped: {event.mimeData().text()}")

print(event.mimeData().formats())

if self.accepting_drop:

self.le_pastedLink.setText(event.mimeData().text())

event.acceptProposedAction()

self.accepting_drop = False

self.start(True)

def resize_scroll(self, min, maxi):

print("Range change", min, maxi)

self.scrollArea_2.verticalScrollBar().setValue(maxi)

def paste_and_edit(self, data):

Take the paste buffer (clipboard) and allow for edits

print("Paste and Edit!")

paste_text = QGuiApplication.clipboard().text()

self.le_pastedLink.setText(paste_text)

self.pb_startButton.setDisabled(False)

def paste_and_go(self, data):

Take the paste buffer (clipboard) and process it immediately

print("Paste and Go!")

self.pb_pasteGoButton.setDisabled(True)

self.pb_startButton.setDisabled(True)

paste_text = QGuiApplication.clipboard().text()

self.le_pastedLink.setText(paste_text)

Our start method where we create workers and

begin processing.

self.start(data)

Threading is implemented in this method.

def start(self, data):

Take the submitted text and send it for processing

print("Start!")

do_something = False

command_arg = ""

if self.le_pastedLink.text().strip() != "":

do_something = True

command_arg = self.le_pastedLink.text().strip()

19

elif self.lb_processingLinkValue.text() != "" and self.lb_processingLinkValue.text() != "Nothing":

do_something = True

command_arg = self.lb_processingLinkValue.text().strip()

self.le_pastedLink.setText(command_arg)

if do_something:

self.pb_pasteGoButton.setDisabled(True)

self.pb_startButton.setDisabled(True)

self.lb_processingLinkValue.setText(command_arg)

#self.te_failureLog.append("")

self.progress_dialog.show()

self.command = f’’’"{self.shell_command}" "{command_arg}" ’’’

#self.command = f"""sleep 4"""

#self.command = f"""exit 4"""

worker = Worker(self.command)

worker.signals.error.connect(self.error_callback)

worker.signals.result.connect(self.callback)

worker.signals.finished.connect(self.thread_complete)

worker.signals.output.connect(self.progress_output)

worker.signals.errors.connect(self.progress_errors)

Call our subprocess indirectly here using the worker’s

run method.

self.threadpool.start(worker)

else:

print("Nothing to do.")

self.pb_pasteGoButton.setDisabled(False)

self.pb_startButton.setDisabled(False)

def thread_complete(self):

print("Thread complete.")

self.pb_pasteGoButton.setDisabled(False)

self.pb_startButton.setDisabled(False)

def clear(self, data):

Clear the link editing buffer and logs

print("Clear!")

self.le_pastedLink.setText("")

self.te_failureLog.setText("")

self.te_successLog.setText("")

def error_callback(self, error=None):

print("Error reported ", error)

try:

20

text = self.lb_processingLinkValue.text().strip()

self.te_failureLog.append(text)

except Exception as err:

self.te_failureLog.append(self.lb_processingLinkValue.text())

#self.te_failureLog.append("===")

self.lb_processingLinkValue.setText("")

self.pb_pasteGoButton.setDisabled(False)

self.pb_startButton.setDisabled(False)

def callback(self, result):

print("Result reported ", result)

self.te_successLog.append(self.lb_processingLinkValue.text().strip())

self.lb_processingLinkValue.setText("")

self.pb_pasteGoButton.setDisabled(False)

self.pb_startButton.setDisabled(False)

def progress_errors(self, line):

#print("Errors reported")

self.progress_dialog.te_progressDialog.append(line.strip())

print(line.strip())

def progress_output(self, line):

#print("Output reported")

self.progress_dialog.te_progressDialog.append(line.strip())

#print(line.strip())

6.3 Pasting Text and Drag and Drop

The Qt framework has excellent built-in support for drag and drop / copy and paste
functionality. The code is present in the widgets.py file.

We’ll break out the bits here for clarity. We need to include QGuiApplication which
has clipboard methods we can use to extract any text copied to the paste buffer.

from PySide6.QtGui import QGuiApplication

Example of extracting paste buffer text from the clipboard.

paste_text = QGuiApplication.clipboard().text()

The above lines are in the paste and go method and the paste and edit method.

For drag and drop, we simply include some methods, as explained by the documentation,
in our main window widget:

21

def dragEnterEvent(self, event):

self.accepting_drop = False

if event.mimeData().hasFormat("text/plain"):

event.acceptProposedAction()

self.accepting_drop = True

def dropEvent(self, event):

print(f"Dropped: {event.mimeData().text()}")

print(event.mimeData().formats())

if self.accepting_drop:

self.le_pastedLink.setText(event.mimeData().text())

event.acceptProposedAction()

self.accepting_drop = False

self.start(True)

Drag and drop uses an event to pass the text into the program, which we accept and
extract the text from if it has the proper mime type. Then we just run our start method
after putting the text into our pasted link (le pastedLink) field.

Refer to PySide6.QtGui.QDropEvent - Qt for Python3 for more information.

To be honest, I copied and pasted most of this so my understanding is shallow.

6.4 Compute Code

The compute.py module contains two classes used to implement our threading function-
ality.

The WorkerSignals class defines our set of five Qt communication channels using Signal
as described in section 4.1.2.

"""

Contains the computing functionality of the program.

This is the threading version.

"""

import subprocess

from PySide6.QtCore import QRunnable, QThreadPool, Slot, Signal

from PySide6.QtCore import QObject

3https://doc.qt.io/qtforpython-6/PySide6/QtGui/QDropEvent.html

22

https://doc.qt.io/qtforpython-6/PySide6/QtGui/QDropEvent.html

class WorkerSignals(QObject):

"""

Source: https://www.pythonguis.com/tutorials/multithreading-pyside6-applications-qthreadpool/

Useful/typical signals emitted from a running worker thread.

finished

No arguments

error

One argument: Exception object thrown

errors

One argument: string from process stderr (not used since we

pipe stderr to stdout)

output

One argument: string from process stdout

result

One argument: usually the subprocess.CompletedProcess object returned from processing.

"""

finished = Signal()

error = Signal(object) # Exception

result = Signal(object) # subprocess.CompletedProcess

output = Signal(str) # stdout

errors = Signal(str) # stderr

The worker class is run via the thread pool we create in our QMainWindow widget. Then
the widget’s start method instantiates the worker and runs it. The Worker class uses
the signals defined in our WorkerSignals class (above).

class Worker(QRunnable):

"""

Requires an argument to pass to the subprocess.Popen (command).

The command argument will be called directly via subprocess.Popen

as a shell command. It’s output will be captured

Be aware that this can introduce risk in the form of arbitrary command

execution.

"""

def __init__(self, command):

super().__init__()

self.command = command

23

self.signals = WorkerSignals()

@Slot()

def run(self):

""" Run our process """

print("Now in worker’s run method.")

print(f"Run command as subprocess: {self.command}")

try:

with subprocess.Popen(self.command,

shell=True,

bufsize=1,

universal_newlines=True,

stdout=subprocess.PIPE,

stderr=subprocess.STDOUT,

text=True) as subproc:

for line in subproc.stdout:

send the process’ stdout to our signal

processer by using emit on our output signal.

This signal processor is a method on our LazyLink widget

called progress_output in widget.py.

self.signals.output.emit(line.strip())

The subprocess command receives an error code, check it for

non zero, indicating an error. Re-raise a CalledProcessError.

if subproc.returncode != 0:

raise subprocess.CalledProcessError(subproc.returncode,

subproc.args)

except subprocess.CalledProcessError as err:

print("Caught CalledProcessError")

print("stderr: ", err.stderr)

self.signals.error.emit(err)

except subprocess.TimeoutExpired as err:

print("Caught timeout")

self.signals.error.emit(err)

except Exception as e:

print("Caught unexpected exception")

self.signals.error.emit(e)

else:

print("Process completed with result")

print(subproc.args)

#print(f"Output: {result.stdout}\nErrors: {result.stderr}")

self.signals.result.emit(subproc.args) # Return the result of the processing

24

finally:

self.signals.finished.emit() # Done

6.5 Progress Dialog

We also used the Qt Widget Designer to generate a pop-up dialog window for actively
displaying the output of our processing command. It is named LazyLinkProgress and
is found in widgets.py. This class has QDialog and Ui dw progressDialog as its base
classes and has the following structure:

...

from ui_progress_dialog import Ui_dw_progressDialog

class LazyLinkProgress(QDialog, Ui_dw_progressDialog):

def __init__(self, parent=None):

super(LazyLinkProgress, self).__init__(parent=parent)

self.setupUi(self)

self.parent = parent

self.buttonBox.rejected.connect(self.close_dialog) # Close

self.buttonBox.button(

QDialogButtonBox.StandardButton.Reset

).clicked.connect(self.reset_contents) # Reset

def close_dialog(self):

print("Closing progress")

self.te_progressDialog.setText("")

def reset_contents(self):

print("Reset progress")

self.te_progressDialog.setText("")

We attach this dialog to our main window and show it when we start running our worker
thread. Its text edit box gets filled with the subprocess’ standard output via the main
window’s progress output method. The text edit box is named te progressDialog

and is referenced as follows:

self.progress_dialog.te_progressDialog.append(line.strip())

self is the main window in this context. line comes from the output signal emitted

25

by the executing thread.

We have a Reset button to clear the contents and a standard Close button.

Figure 7: Lazy Link Progress Dialog

6.6 Shell Code

We use an external command file named ll command.sh to execute as our subpro-
cess.

#!/bin/sh +x

Run this command as our lazy link program

Totally not secure.

#

Pass one argument only as the regular parameter, i.e. the URL

Pass two arguments: the first is a path to prefer for file operations,

i.e. the working directory for the command if it accepts one.

Does not change directory to this path.

The second is the regular parameter as described in the one argument

case.

#

sleep 1

Number of arguments

echo $#

echo "PID: " $$

if [2 -eq $#]

26

then

PREFERRED_DIR="$1"

shift

else

PREFERRED_DIR="./"

fi

#PREFERRED_DIR=shift()

echo "Preferred directory: " $PREFERRED_DIR

echo "Remaining arguments: " $@

Our arbitrary command:

echo "$@"

7 PyInstaller Tool

To avoid having to install a bunch of dependencies and python libraries on systems
where the lazylink program might be useful, we can bundle up all the code into a
single executable. This is where PyInstaller comes in.

This tool has comprehensive instructions: PyInstaller Manual - PyInstaller 6.16.0 doc-
umentation4 It can be installed system-wide using pip (note again, we are not using a
virtual environment or the pip -U form for a user installation):

pip install pyinstaller

For the first run of pyinstaller we execute this command to create an initial executable
as well as a ‘spec’ file. We are in the program’s code directory, of course.

% pyinstaller --onefile --windowed --name=’lazylink’ main.py

156 INFO: PyInstaller: 6.16.0, contrib hooks: 2025.8

156 INFO: Python: 3.11.13

167 INFO: Platform: FreeBSD-14.3-RELEASE-p5-amd64-64bit-ELF

167 INFO: Python environment: /usr/local

168 INFO: wrote /home/mv/1mvgdocs/dev/pyprojects/droplink/lazylink.spec

174 INFO: Module search paths (PYTHONPATH):

[’/usr/local/lib/python311.zip’,

’/usr/local/lib/python3.11’,

’/usr/local/lib/python3.11/lib-dynload’,

’/usr/local/lib/python3.11/site-packages’,

’/home/mv/1mvgdocs/dev/pyprojects/droplink’]

<frozen importlib._bootstrap>:241: RuntimeWarning: Your system is avx2

capable but pygame was not built with support for it. The performance of

some of your blits could be adversely affected. Consider enabling compile

time detection with environment variables like PYGAME_DETECT_AVX2=1 if

you are compiling without cross compilation.

pygame 2.6.1 (SDL 2.32.8, Python 3.11.13)

Hello from the pygame community. https://www.pygame.org/contribute.html

4https://pyinstaller.org/en/stable/

27

https://pyinstaller.org/en/stable/
https://pyinstaller.org/en/stable/

712 INFO: checking Analysis

...

15074 INFO: checking PKG

15074 INFO: Building PKG because PKG-00.toc is non existent

15074 INFO: Building PKG (CArchive) lazylink.pkg

30712 INFO: Building PKG (CArchive) lazylink.pkg completed successfully.

30718 INFO: Bootloader /usr/local/lib/python3.11/site-packages/PyInstaller/bootloader/FreeBSD-64bit/run

30718 INFO: checking EXE

30718 INFO: Building EXE because EXE-00.toc is non existent

30718 INFO: Building EXE from EXE-00.toc

30718 INFO: Copying bootloader EXE to /home/mv/1mvgdocs/dev/pyprojects/droplink/dist/lazylink

30719 INFO: Appending PKG archive to EXE

30740 INFO: Building EXE from EXE-00.toc completed successfully.

30747 INFO: Build complete! The results are available in: /home/mv/1mvgdocs/dev/pyprojects/droplink/dist

The runnable program is placed in a ./dist folder and is usually named main, but since
we specified the --name option, it is called lazylink instead. The created spec file is
also named lazylink.spec.

% ls -la dist/

total 136355

drwxr-xr-x 2 mv mv 6 Nov 7 17:29 .

drwxr-xr-x 7 mv mv 24 Nov 7 17:29 ..

-rwxr-xr-x 1 mv mv 46534614 Nov 7 17:29 lazylink

-rwxr-xr-x 1 mv mv 873 Nov 7 17:15 ll_command.sh

NOTE: I had to manually copy the shell script ll command.sh into the dist/ folder as
pyinstaller isn’t aware of its use in the program.

The lazylink.spec file can now be used with pyinstaller to make regeneration of the
single executable easier:

% pyinstaller lazylink.spec

We can also edit the lazylink.spec file to change the name of the executable file from
the default of lazylink to something else, such as lazylink.v1 if desired.

% cat lazylink.spec

-*- mode: python ; coding: utf-8 -*-

a = Analysis(

[’main.py’],

pathex=[],

binaries=[],

datas=[],

hiddenimports=[],

hookspath=[],

hooksconfig={},

runtime_hooks=[],

excludes=[],

noarchive=False,

28

optimize=0,

)

pyz = PYZ(a.pure)

exe = EXE(

pyz,

a.scripts,

a.binaries,

a.datas,

[],

name=’lazylink’,

debug=False,

bootloader_ignore_signals=False,

strip=False,

upx=True,

upx_exclude=[],

runtime_tmpdir=None,

console=False,

disable_windowed_traceback=False,

argv_emulation=False,

target_arch=None,

codesign_identity=None,

entitlements_file=None,

)

To use the lazylink program and its ll command.sh companion, use your favourite copy
command (I use scp) to move the program and its command to your other FreeBSD
systems.

I copied the large 46MB lazylink file to my home folder’s bin directory so it can be
found in the PATH.

NOTE: The lazylink program will look for the ll command.sh script in your current
working directory, so placing ll command.sh in your PATH won’t work.

This is a feature. Really.

One last thing, the executable pyinstaller creates is platform specific, so if you want
a Windows executable, you have to use pyinstaller on a Windows system. Same for
Linux and MacOS.

8 Conclusion

There is no end to laziness.

Well, actually, I did have to learn a bunch of stuff to realize my laziness, so there is
that.

29

9 Resources

Here is a list of videos that I used to get started and learn how to use the tools, languages
and libraries used in this project.

The channels that these videos belong to contain many other useful tutorials and ref-
erence material. The ones chosen below are good examples I found particularly use-
ful.

1. GUI Frameworks for Python

https://www.youtube.com/watch?v=pCXcQU-aMYs

From the description of the video: “Aug 27, 2025 In this video I give an overview
of the most common GUI frameworks for Python”

The author describes tkinter, wxPython, PyQT and PySide. I chose PySide mostly
because of this useful video.

2. PySide6 Crash Course: GUI Development in Python with Qt6

https://www.youtube.com/watch?v=9 NGCpM2r7s

From the description: “Aug 11, 2025 In this video, we do a crash course on Py-
Side6, which is a modern framework for developing graphical user interface (GUI)
applications in Python with Qt6. What you learn in this video can easily also be
applied to PyQt6.”

I used the above video as a way to get a fairly complete overview of the Qt devel-
opment process. It also introduces Qt Widget Designer, which is what I choose to
use to create my GUI visually. The video focuses on creating the GUI programat-
ically, however, so it is a good reference, but I needed further examples using the
designer.

3. PySide6 Widgets Tutorial - Ep07 - Signals and slots

https://www.youtube.com/watch?v=iU1wbOriwIw

From the description: “Nov. 8, 2022 Use signals and slots to respond to things
happening in your Qt Widgets GUI applications - Pyside6 Widgets tutorial”

Provides insight into linking signals such as button presses (and similar) with a
function (slot) to perform an action.

4. Creating GUI threads with Python PySide 6 and QThreadPool

https://www.youtube.com/watch?v=Vh0y8ZrlX4w

From the description: “Mar 31, 2025 ... The aim in this video is to show how you
can use QThreadPool to ensure the application continues to be responsive when
performing other operations. This is not the only option but some way of using
an alternative thread or process is needed for most GUI applications.”

30

https://www.youtube.com/watch?v=pCXcQU-aMYs
https://www.youtube.com/watch?v=9_NGCpM2r7s
https://www.youtube.com/watch?v=iU1wbOriwIw
https://www.youtube.com/watch?v=Vh0y8ZrlX4w

This video taught me the basics of using the Worker class and thread pools.

5. Using Qt Designer files in PySide6 or PyQt6

https://www.youtube.com/watch?v=MfCOJltTSCk

From the description: “Dec 19, 2022 This video will show you the correct way to
use Qt Designer UI files in either PySide6 or PyQt6.”

This video showed me how to use Qt Widget Designer in a workflow for visually
creating my GUI and gave me insight into how the generated code fits into my main
window. Note that QWidget was used in his example instead of QMainWindow
in our program.

31

https://www.youtube.com/watch?v=MfCOJltTSCk

	Introduction and Requirements
	Development Environment
	Open Source VSCode
	Qt Widgets Designer

	Languages and Libraries
	Python 3.11
	No Virtual Environment?

	PySide6
	subprocess module
	Bourne Shell

	Code Patterns
	Program Execution and Threading
	Workers
	Signals
	Other Signals

	Graphical User Interface
	Our LazyLink Software
	Main Program
	Widget Code
	Pasting Text and Drag and Drop
	Compute Code
	Progress Dialog
	Shell Code

	PyInstaller Tool
	Conclusion
	Resources

