XOR Logic with a Neural Network on a Raspberry Pi Pico

Two input XOR logic is implemented with an artificial neural network (ANN) (see Figure 1)
written in MicroPython on a Raspberry Pi Pico microcontroller (see Figure 2) as an
educational exercise of using artificial intelligence to control machinery (LEDs in this
example). Project files (including this document) are stored in a GitHub repository (see
section 7.0).

Figure 2 — Raspberry Pi Pico running an artificial neural network

See section 7.0 for details of a GitHub repository containing this document and other
resources.

| can be contacted by email for questions and to report errors.
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1.0 Introduction

Artificial neural networks (ANNs) are mathematical models that replicate some capabilities
of the human brain.

ANNSs can find complex relationships between variables and with current computing
technology can do this to make practical applications widespread.

Artificial neural networks can be implemented on microcontrollers to control hardware as
demonstrated with the example project presented in this document.
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2.0 Background

Artificial intelligence is the science of replicating capabilities of the human brain with
computing technology.

Machine learning (ML) is the study of computer algorithms that can improve automatically
through experience and by the use of data. [1]

Artificial neural networks' are a sub-set of machine learning (see Figure 3).

Artificial intelligence (Al)

Artificial intelligence

Machine learning (ML)

Artificial neural
networks oo Artificial neural networks (ANN)

Deep
learning

-+ Deep learning (DL)

Figure 3 — Al and ANNSs [2]

Linear regression is an example of machine learning.

Simple Linear Regression

Figure 4 - Linear regression [3]

' Deep learning refers to artificial neural networks that have many hidden layers.
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The equation y = ax + b relates the output to the input.

The parameters a and b can be chosen (trained) to minimise, for example, the sum of the
square of the difference between the true values of y and those predicted by the straight
line.

The collection of x, y pairs is called the dataset.

The parameters a and b can be updated programmatically if the dataset changes.

An artificial neural network is an equation that relates the output to the input.

The parameters are called weights and biases. These are determined through a training
process using the same error minimization criterion used with linear regression.

Datasets for ANNs may be much more diverse than x, y pairs.
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3.0 Artificial neural networks

The structure and function of biological neural network, e.g. a human brain, are mimicked
by ANNSs.

3.1 Structure of a biological neural network

Neurons are cells that transmit signals from the inputs x to the outputs y (see Figure 5).
There are about 86 billion in the human central nervous system with about 16 billion in the
cerebral cortex (responsible for higher functions) [4] .

Dendrite
Axon terminal

o 4 = O Outputs

\J Myelin sheath Output points = synapses
»

Inputs

Input points = synapses

‘ Myelinated axon trunk

Figure 5 — Neuron input and output [5]

Signals from upstream neurons are received at dendrites. If their sum reaches a threshold
value then the neuron generates a transient voltage spike, an action potential (see Figure
6 and Figure 7), which travels towards downstream neurons through axions. The
magnitude of the potential that is transmitted to a downstream dendrite (and neuron) is
regulated by a synapse (see Figure 6) which includes a gap over which neurotransmitters
flow across.

Post-synaptic neuron , ...
potential

Dendrites Action

Axon

Dendrites

Pre-synaptic neuron

Figure 6 — Action potential and synapse [6]
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Figure 7 — Action potential [7]
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3.2 Perceptrons

Perceptrons are mathematical models of neurons and are the building block of artificial
neural networks.

3.2.1 Perceptron model

A perceptron is shown in Figure 8.

Bias is usually shown connected here
: but shown in alternate position for
; clarity

~—g(h) y

h(x,w,b)

Figure 8 - A perceptron

x; = inputs
w; = weights
b = bias

h(x;, w;, b) = weighted sum of inputs plus a bias (a scalar)
g(h) = activation function
y = calculated output (a scalar)

3.2.2  Perceptron activation function:

The activation function controls when the perceptron will fire and produce the equivalent
of the action potential in a neuron [8].

A very common activation function used with ANNs is the sigmoid function, o(x) (see
Figure 9).
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1.0

0.8

0.6 A

0.2

0.0

—4 —2 0 2 4
sigmoid

Figure 9 - Sigmoid activation function [9]

The sigmoid function:

1
1+e*

o(x) =

3.2.3  Calculating perceptron output

n
h(x;, Wi, b) = Z(wixi) +b eqn. 1
i=1

The value of n is the number of inputs.

The output of a perceptron is therefore:

eqn. 2

gh) = 1+eh

3.2.4 Updating weights and biases (with the delta rule)

Weight values provide a functionality similar to synapses controlling the strength of
connection between nodes. | could not find and explanation of how a bias is produced in a
neuron.

Weights and biases are calculated using an iterative process using the delta rule [10].

This rule calculates the incremental change in upstream weights and biases that will
minimize a cost function incorporating the error in the output.
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Error in the output:

e=t-y

t = target (known value of output for given input, x;)
y = calculated output of perceptron (see 3.2.3)

Cost function:

1
C=-=e
2

The delta rule for the case that the activation function is the sigmoid function.

Aw; = aey(1 — y)x; eqgn. 3

a = learning rate (see below)
Aw; = change that will decrease the error in the output of a perceptron

A bias is updated by using the delta rule by setting the input, , equal to 1.

Ab = aey(1 — y)(1) eqn. 4 -

The learning rate moderates the change in weights and biases during the iterative process
to converge on a solution (see section 5.1). If too large, the solution process becomes
unstable and if too small, the solution takes an unnecessarily long time.

Each weight and bias can be updated independently of other weights and biases (see

Figure 10).
1
X4 b
W,
X2 W Y -gh)——y
Xg %
h(x,w,b)
Figure 10 - A perceptron (copy of Figure 8)
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3.2.5  Perceptron example

This example illustrates application of the delta rule (eqn. 3 and eqn. 4 ).

h(x,w,b)

Figure 11 — Perceptron for AND logic example

Table 1- AND logic dataset (4 records)

Input 1 Input 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

x; = Input 1
x5 = Input 2
t = target value, (Output from Table 1)

Procedure:

1) Initialize weights and bias with random values between -1 and 1

)
2) Calculate the output,y , and update the error, e,
3) Update weights and bias with the equations below
4) Repeat steps 2 and 3 until results are “correct”

Aw; = aey(1 —y)x,
Aw, = aey(1 — y)x,
Ab = aey(1—y)(1)

Recall:
y = calculated value of output
e=t—y
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A Python program? with the learning rate,a, equal to 0.5 and using 5,000 iterations
(epochs) produced the following values for the weights and the bias:

W1 = 653
Wy = 653
b =-9.88

Using these values, the results were (compare last two columns):

Table 2- Results

X1 Xy Wi * X1 | Wy * Xy b h(x;,w;,b) | y=0o(h) t
0 0 0 0 -9.8 -9.8 0 0
0 1 0 6.53 -9.8 -3.27 0.03 0
1 0 6.53 0 -9.8 -3.27 0.03 0
1 1 6.53 6.53 -9.8 3.26 0.96 1

The solution surface of the neural network is shown in Figure 12. It is surface that
minimizes the sum of the square of the difference between the true values of the output
and those predicted by the surface and therefore is the solution of regression analysis.

3D Output of Perceptron for AND Logic (Sigmoid Activation)

X AND Data Points

0.8

Output (y)

0.0

0.2
0.4

x1 0.6

0.8
1.0 0.0

Figure 12 - Solution surface for AND logic [ChatGPT]

2 Saved in a GitHub repository (see section 7.0)
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Further, if a plane is arbitrarily drawn at z = 0, then the intersection, called the decision
boundary, with the solution curve is viewed in the 2D plane defined by the two inputs (see
Figure 13), it is seen that the data point with a value of 1 is separated from the datapoints
with a value of 0. This is known as classification.

Classification is a practical application of neural networks. For example, if the inputs were
two inspection dimensions of a manufactured part then the decision boundary could

separate accepted from rejected parts.

Perce%r.on Decision Boundary for AND Logic (Sigmoid Activation)
i ]

0 X Decision Boundary 1
0.8
0.6
o~
x
0.4r
0.2
0 0
' 1 1 1 1 '
O'%.O 0.2 0.4 0.6 0.8 1.0

x1

Figure 13 - Decision boundary for AND logic [ChatGPT]
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4.0 Artificial Neural Networks

41 Structure of an ANN

Perceptrons can be assembled into networks to solve more complex problems (see Figure
14).

Wij
source nocV
destination node
Wih

input 1 output 1
Yi ket
i=1
input 2 output 2
) Yk k=2
i=2
i=3
i input nodes j hidden nodes k output nodes
input layer hidden layer output layer

(perceptrons) (perceptrons)

Figure 14 — An example of an artificial neural network

Nodes are arranged in layers and adjacent layers are connected by connections which
are also called links or edges.

Inputs are on the left and outputs on the right. The number of nodes in each layer
depends on the application. There may one or, more commonly, more than one hidden
layer.

The w values are called weights. The b values are called biases and are not always
required.

The circles are referred to as nodes. Nodes in the hidden and output layers are
perceptrons (see section 3.2).
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5.0 Application of perceptron equations to ANNs

This section is substantially based on ref. [11].

For variables, refer to Figure 8 and Figure 14.

5.1 Matrices and NumPy library

The equations used for artificial neural network calculations are described with (NumPy)
matrices. Matrix operations are implemented in Python and in MicroPython (the language
used for this project) are implemented in the NumPYy library.

This is a matrix, A:

3 10 8
A—[15 2 6

It has 2 rows and 3 columns. It dimensions are written as 2 x 3.

Individual elements are identified by their row and column numbers. The row number is
the first index i and the second index is the column j. The top left element is in row 1 and
column 1, e.g., a;; = 3.

So, A can be written as:

a11 dgz  a13
A= |

dz1 dpz dz3

To access an element with NumPy: a[i][5]

Dot product

The dot product between two matrices is written:

C =A4-B

If matrix B is:
bll

B = |bx
b31

Then the dot product is:
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a11b11 + aszbyg + agzbsg
az1bq1 + azzbyg + azsbsg

This has dimension of: 2 x 1

The dot product can be made if the number of columns of the first matrix A, has the same
number of row as the second matrix B. The dimensions of the resulting matrix C has the
same number of rows as the first matrix and the same number of columns the second
matrix.

For the example above:

2x1=2x3 +* 3x1

To take a dot product with NumPy: C = np.dot (7, B)

Row by row multiplication

Matrices with the same number of rows and each with one column can be multiplied row

by row:
diq
D = [d2
d3;
E =B xD
b11] [d11
E = |ba1|*|d21
b3 ] Ld3,
'b11d11
E = |b21dz1
b31d3q

To complete a row by row multiplication with NumPy: E = B * D
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Transpose

A = [a11 Qa2 a13]
a1 Q2 A3

Transpose is obtained by switching row and column indexes for each element.

F=AT
ai1 dzi
F = |a12 QA
ai3 Q33

To complete take a transpose with NumPy:
F =A.T
or:

F = np.transpose (A)
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5.2 Algorithm to calculate weights and biases (training)
The perceptron equations are applied to a complete network to first calculate the outputs
from a network (forward propagation) and then update all weights and biases (backward
propagation).
Training is an iterative process:
1) Initialization of all weights and biases with random numbers between -1 and 1
2) Forward propagation (calculate outputs)
3) Backwards propagation (update weights and biases)
4) Repeated application of steps 2 and 3 until the cost function is minimized.
Each iteration is called an epoch. It is important to note that the complete dataset is
processed during each epoch. The number of epochs can be determined by monitoring
the cost function (see Figure 18).
Once trained and the weights and biases are known, the neural network is ready to use
with a forward propagation step. This is known as inference.
5.3 Propagation equations
For variables in this section, refer to Figure 14.
5.3.1 Forward propagation
Forward propagation is the process of calculating the output for a given input. Working
from left to right, output from the nodes from upstream layers are combined in the next
layer of nodes using the equations for a perceptron (eqn. 1 and eqn. 2 section 3.2.3).
Calculate the outputs from the hidden layer:
The x values are the inputs to the neural network.
h; Winy,  Wihy | bn1
[hzl = [Wih12 Wihzzl [x;] + [bn2
h, Wihyz  Wihy, b3z
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Y1 hy
y2| = g|h2
Y3 h3

The y values are then used as the input (x values) into the output layer.

Calculate the output from output layer:

h1 _[Wh011 Wh021 Wh031]
h2 Whoi,  Whop,  Whos,

bol]
+
e

X1
X2
X3

yi1 _ [y
YZ] — 8 [hz]
The y values are the output from the output layer.

5.3.2  Backward propagation

Backward propagation is the process of updating all weights and biases using the delta
rule (eqn. 3. and eqn. 4 section 3.2.4). For layers with multiple perceptrons, the equation
is modified to (j is input index, k is output Index):

Awjp = aepyr(1 — yir)xik
Weights and biases are updated working from right to left.

Output layer to hidden layer:

Values of t are target values (known).
e01 _ t1—y1
[ear] = [, — 2]

el=ele IR
Updating weights:

The x values are outputs y from hidden layer.
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[AWhOll AWh021 Awh031] — [:::1] [Xl XZ X3]
2

AWh012 AWh022 Awh032

Updating biases:

[Abol

C
] = [ 1] because x values are 1
Ab,, G2

Hidden layer to input layer:

Error from hidden layer [11], pp.81, 82, 140:

I
€h = Who " €0

ehl AWholl Awholz eol
€h, | = AVvh021 AVVhozz - |€o;
eh3 AVvho31 AVvho32 803

The y values are output from hidden layer.

Cy €, 1[Y11[1 —¥1
Gl=a ehz Vol |1 — Vs
C3 €y fLy3l 11l —y3

Updating weights:
Awin,,  AWin, | e
Awin,,  Awip,, =[c2] [X1 X2]

Awip,,  Awip,, C3

Updating biases:

Aby,, c
Aby, | = [Czl because x values are 1
Abh3 C3
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5.3.3 Inference

Inference is the process of a single feedforward propagation using the final values of
weights and biases (see section 5.3.1).
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6.0 Implementation of an ANN on a microcontroller

6.1 XOR logic

The logic for a two-input logic gate is in Table 3.

Table 3- XOR logic dataset (4 records)

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0
x; = Input 1
X, = Input 2

t = target value, (output from Table 3)
6.2 ANN model for XOR logic

The model for this problem can be found on the internet. It is commonly used for
explaining how neural networks work.

input 2
i=2

Figure 15 — ANN model for XOR logic

26 of 40

© James S. Canova, jscanova@gmail.com
Victoria, BC

File name: xor_nn_rasppipico_v0



6.3 Hardware
The project assembly is shown in Figure 16.

When the Raspberry Pi Pico is reset, the neural network begins to train. The red LED is
on until the training process completes which takes about 2.5 [minutes]. When training is
complete, the red LED turns off and the green LED turns on.

Following training, the program enters an infinite loop during which the program polls the
positions of the two input switches (0 or 1) and calculates the output (0 or 1). If the output
from the neural network is 1 then the blue LED is turned on otherwise the output is 0 and
the yellow LED is turned on.

Figure 16 — Assembly
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6.4 Schematic

Schematic is shown below (see Figure 17). All components are commonly found.

GND input 1 slider switch
/ . reset button
[l
1/1( HOEEPERERERRREPEA RO
- BR1s micro USB-AB
-— - /—
% ] 5066666000606066060900
[ 3300
GND GND - 1 - 1
\inputO slider switch red green  blue yellow

Figure 17 - Schematic

6.5 Raspberry Pi Pico

Raspberry Pi Pico specifications are tabulated below (see Table 4).

Table 4 — Raspberry Pi Pico

CPU RP2040: 32bit, dual-core Arm Cortex-M0O+ processor, 133MHz
RAM 254 KB

Flash 2 MB

Price (Amazon.ca) | $15.95CAD (with headers)

MicroPython must be loaded on to the microcontroller. This is accomplished using a uf2
format file and various builds are available on the internet (see b. below). A version of uf2
built to include the ulab library because it contains a compact version of the Python
NumPy library. The NumPYy library includes the variable types and methods required for
the many matrix calculations required for neural network calculations.

a) Set-up instructions:
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

b) Download uf23 with ulab from here (RPI_PICO.uf2):
https://qgithub.com/v923z/micropython-builder/releases

3 UF2 (USB Flashing Format) is a format designed by Microsoft to flash firmware on microcontrollers
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c¢) To load uf2 (that includes ulab library) on to Raspberry Pi Pico:
https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

The host operating system can be either a Linux distribution or Windows.

6.6 IDE

Thonny (installation and use):
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/2

6.7 MicroPython code for microcontroller (see Appendix |)

There is one class, it is for the neural network and includes a constructor plus methods to
train and infer results.

The dataset for training is contained within the program.

6.7.1 Equations in MicroPython

Forward propagation equations (see section 5.3.1)

Forward propagation is simply applying the input and calculating all downstream values to
calculate a predicted output.

128: #forward propagation-----
129: #calculate hidden outputs from inputs
130: hidden sums = np.dot(self.wih, input) + self.bih # 2 x 2 . 2 x 1 + 2 x 1
=2 x1
131: hidden outputs = sigmoid(hidden_sums) # 2 x 1
132:
133: #calculate predicted output from hidden outputs
134: output sum = np.dot (self.who, hidden outputs) + self.bho # 1 x 2 . 2 x 1
+1x1=1x1
135: final output = sigmoid(output_sum) # 1 x 1
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Backward propagation equations (see section 5.3.2)

138: #backward propagation-----

139: #update weights for hidden to output layer

140: output _error = target - final output #1 x 1 -1 x 1

141: dWho = self.lr * np.dot((output error * final output * (1.0 -

final output)), hidden outputs.T) # 1 x 1 . 1 x 2 =1 x 2

142: self.who += dWho # 1 x 2

143:

144: #update bias for output layer

145: dbho = self.lr * output error * (final output * (1.0 - final output)) # 1
x 1

146: self.bho += dbho # 1 x 1

147:

148: #update weights for hidden layer

149: hidden error = np.dot(self.who.T, output_error) # 2 x 1 . 1 x 1 =2 x 1

[Rashid, pp.81,82,140]

150: dWih = self.lr * np.dot((hidden error * hidden outputs * (1.0 -

hidden outputs)), input.T) # 2 x 2

151: self.wih += dWih # 2 x 2

152:

153: #update biases for input to hidden layer

154: dbih = self.lr * hidden error * (hidden outputs * (1.0 - hidden outputs))
#2x1

155: self.bih += dbih # 2 x 1

Inference equations (see section 5.3.1)

160: # to infer output from inputs
161: def infer(self, input):
162:
163: #calculate hidden outputs from inputs
164: hidden sums = np.dot(self.wih, input) + self.bih # 2 x 2 . 2 x 1 + 2 x 1 =2 x
1
165: hidden outputs = sigmoid(hidden_sums) # 2 x 1
166:
167: #calculate predicted output from hidden outputs
168: output sum = np.dot (self.who, hidden_outputs) + self.bho #1x2 .2x1+1
x1=1x1
169: inferred output = sigmoid(output sum) # 1 x 1
170:
171: return inferred output # 1 x 1
6.8 Results

The project works as intended.

During training, the cost (error) is calculated during each epoch, i.e. during each update of
weights and biases.

Training used a total of 20,000 epochs and took about 2.5 [min.].

From the graph, the cost in the results is about 5%.
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Figure 18— Error during training neural network*

The solution surface is shown in Figure 19 and the decision boundary is shown in Figure 20
and has 2 decision boundaries as opposed to 1 as in the case of AND logic (see section
3.2.5). A perceptron can only define 1 decision boundary as opposed the 2 required for OR
logic which explains the more complicated neural network model used for the XOR logic.

4 Plotted with a Python program in Google Colab
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3D Output of XOR Neural Network (Sigmoid Activation)
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Figure 19 - Solution surface for XOR logic [ChatGPT]
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Figure 20 - Decision boundaries for XOR logic [ChatGPT]
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As more layers are added, the capabilities of artificial neural networks extend from
regression and classification to identification of features and recognition of patterns both
spatially (such as images) and in time or in sequences (such as languages).
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Note:
There is a line in the MicroPython program:

rnd.seed (30)

The random number generator for initializing weights and biases had to be seeded with a
particular value (30) for the solution to converge. This should not be the case. Same was
not true for a version that | wrote in Python. | have no explanation for this.
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7.0 Resources

This document in pdf format, the MicroPython code, UF2 file and other resources are
stored in a GitHub repository:

https://github.com/James-Canova/XOR NN.qit
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Appendix | — MicroPython code

1: #main.py (Version 0)

2:

3: #Micropython and Raspberry Pi Pico
4: #Date created: 19 January 2024

5: #last updated: 19 February 2025

6:

7: #James Canova

8: #jscanova@gmail.com

9:

10: #Based on:
11: #Rashid, Make your own Neural Network

12: # https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/

14: #This program solves two input (one output)
16: import micropython

17: from machine import Pin

18: from ulab import numpy as np #for matrix operations
19: import random as rnd

22: #Hyperparameters (i.e. they control the solution)

23: #note: these were selected by trial and error
24 LEARNING RATE = 0.08

25: EPOCHS = 20000

26:

27: #initialize random number generator
28: rnd.seed(30)

29:

30:

31: #setup LEDs

32: #red LED on: not trained

33: #green LED on: trained

34: #blue LED on: output ==

35: #yellow LED on: output == 0

36: ledRed = Pin (16, Pin.OUT)

37: ledGreen = Pin (18, Pin.OUT)

38: ledBlue = Pin (26, Pin.OUT)

39: ledYellow = Pin (28, Pin.OUT)

40:

41:

42: #setup slider switches for inputs

43: sliderl = Pin(14, Pin.IN, Pin.PULL UP)
44: slider2 = Pin (15, Pin.IN, Pin.PULL UP)
45:
46:

47: factivation function
48: def sigmoid (x):

50: return 1/ (1 + np.exp(-x))

52: pass

XOR logic using a neural network

#to initialize weights and biases

55: #for initializing weights and biases between and including:-1, 1

56: #shape contains dimensions of required matrix
57: def create random_array (shape) :

58

59: new_array = np.zeros (shape)
60:

61: nRows = shape[0]

62: nColumns = shape[l]

63:

64: for i in range (nRows) :

65: for j in range (nColumns) :
66: new_array([i] [J] += rnd.uniform(-1, 1)
67: return new_array

68:
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70: #Neural network class
71: class neuralNetwork:

72: # initialise the neural network
73: # note: one hidden layer only
74 # inputnodes = number of input nodes
75: # hiddennodes = number of hidden nodes
76: # ouptutnodes = numper of output nodes
77
78: #member functions:
79: #-init
80: #-train
81: #-infer
82:
83: o
84: def init (self, inputnodes, hiddennodes, outputnodes, learningrate, epochs):
85:
86: # set number of nodes in each input, hidden, output layer
87: self.inodes = inputnodes
88: self.hnodes = hiddennodes
89: self.onodes = outputnodes
90: self.epochs = epochs
91
92: #Initialize weights and biases with random numbers, -1 <= num <= 1
93: self.wih = create random array((hiddennodes, inputnodes)) #2x2
94: self.who = create random array((outputnodes, hiddennodes)) # 1 x 2
95:
96: self.bih = create random array((hiddennodes,1)) # 2 x 1
97: self.bho = create random array((outputnodes,1)) # 1 x 1
98:
99: # learning rate
100: self.lr = learningrate
101:
102: # number of epochs
103: self.epochs = epochs
104:
105: #flag for training
106: self.bTrained = False
107:
108:
109: o
110: # train
111: # inputs is a 4 x 2 numpy array, each row is a pair of input values
112: # targets is a 4 x 1 numpy array
113: def train(self, inputs, targets):
114:
115: # interate through epochs
116: for cl in range(self.epochs):
117:
118: epoch cost = 0.0 # initialize cost per epoch (for plotting)
119:
120: # interate through 4 inputs
121: for c2 in range (inputs.shape[0]): #inputs.shape[0] equals the number of input
pairs which is 4
122:
123: input = inputs[c2, :] # 1 x 2
124: input = input.reshape((2, 1)) # 2 x 1
125:
126: target = targets([c2,:] #target is a 1D numpy array
127:
128: #forward propagation-----
129: #calculate hidden outputs from inputs
130: hidden sums = np.dot(self.wih, input) + self.bih # 2 x 2 . 2 x 1+ 2 x 1 =2 x
1
131: hidden outputs = sigmoid(hidden sums) # 2 x 1
132:
133: #calculate predicted output from hidden outputs
134: output _sum = np.dot (self.who, hidden outputs) + self.bho # 1 x 2 . 2 x 1 + 1 x
1=1x1
135: final output = sigmoid(output sum) # 1 x 1
136:
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137:

138: #backward propagation-----

139: #update weights for hidden to output layer

140: output error = target - final output #1 x 1 -1 x1

141: dwho = self.lr * np.dot((output error * final output * (1.0 - final output)),
hidden outputs.T) # 1 x 1 . 1 x 2 =1 x 2

142: self.who += dWho # 1 x 2

143:

144: #update bias for output layer

145: dbho = self.lr * output error * (final output * (1.0 - final output)) # 1 x 1
146: self.bho += dbho # 1 x 1

147:

148: #update weights for hidden layer

149: hidden error = np.dot(self.who.T, output error) # 2 x 1 . 1 x 1 =2 x1
[Rashid, pp.81,82,140]

150: dWih = self.lr * np.dot((hidden error * hidden outputs * (1.0 -
hidden outputs)), input.T) # 2 x 2

151: self.wih += dWwih # 2 x 2

152:

153: #update biases for input to hidden layer

154: dbih = self.lr * hidden error * (hidden outputs * (1.0 - hidden outputs)) # 2 x
1

155: self.bih += dbih # 2 x 1

156:

157: self.bTrained = True

158:

159: -

160: # to infer output from inputs

161: def infer(self, input):

162:

163: #calculate hidden outputs from inputs

164: hidden sums = np.dot(self.wih, input) + self.bih # 2 x 2 . 2 x 1+ 2 x1=2x1
165: hidden outputs = sigmoid(hidden sums) # 2 x 1

166:

167: #calculate predicted output from hidden outputs

168: output_sum = np.dot (self.who, hidden outputs) + self.bho #1x2 .2x1+1x1-=
1 x1

169: inferred output = sigmoid(output sum) # 1 x 1

170:

171: return inferred output # 1 x 1

172:

173:

174: #

175: #main program

176: #set LEDs to indicate neural network has not been trained
177: ledRed.on()

178: ledGreen.off ()

179: ledBlue.off ()

180: ledYellow.off ()

181:

182:

183: # initialize neural network------

184: # number of input, hidden and output nodes

185: input nodes = 2

186: hidden_ nodes 2

187: output nodes = 1

188:

189:

190: # create instance of neural network

191: nn = neuralNetwork(input nodes, hidden nodes, output nodes, LEARNING RATE, EPOCHS)
192:

193:

194: #train the neural network-------

195: #define the training dataset, which are inputs and targets (outputs)
196: #define inputs and targets for training and infer

197: inputs_array= np.array([[0,0],([0,1],([1,0],[1,1]]) # 4 x 2
198: targets array = np.array([[0],[1],[1],[0]]) # 4 x 1
199:

200: #train
201: nn.train(inputs_array, targets array);
202:
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203: #indicate that the neural network has been trained
204: ledRed.off ()

205: ledGreen.on()

206:

207:

208: #main loop
209: while True:

210:

211: #read state of slider switches (inputs)

212: nValueInput0 = sliderl.value ()

213: nValueInputl = slider2.value ()

214:

215: #format inputs for passing to neural network function for inferring results

216: inputs list = np.zeros((2,1))

217: inputs 1ist[0,0]= nValueInputO;

218: inputs 1list[1,0]= nValueInputl;

219:

220: #infer result (0 or 1)

221: final output= nn.infer (inputs_list)

222: nInferredResult = int (round(final output[0,0])) #round to nearest of 0 or 1

223:

224: #display result using LEDS

225: if nInferredResult ==

226: ledBlue.on ()

227 ledYellow.off ()

228:

229: elif nInferredResult ==

230: ledYellow.on ()

231: ledBlue.off ()

232:

233: else:

234: pass

235:

236: pass

237:

238: pass #end of infinite loop

239:
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