
Things To Like About ZFS

Mark G.

June 22, 2024

This presentation gives an overview of the Zettabyte File System (ZFS).
The hosting platforms for this demonstration are FreeBSD on a Minisforum
mini PC and an implementation of ZFS on a Raspberry Pi 4. Topics cov-
ered are an introduction to ZFS, how to create a ZFS storage system, some
examples of ZFS in use, and descriptions of some of the more useful features
of ZFS.

What is a zettabyte? Wikipedia provides a nice chart at the page Binary
prefix1:

Figure 1: Chart of number multipliers/prefixes

1https://en.wikipedia.org/wiki/Binary prefix

1

https://en.wikipedia.org/wiki/Binary_prefix
https://en.wikipedia.org/wiki/Binary_prefix

Contents

1 Introduction 4
1.1 How Much Can it Hold? . 4
1.2 It Needs Lots of Memory . 4
1.3 Data Storage Members (Disks / Partitions) 4
1.4 Pools . 5
1.5 Datasets . 5

1.5.1 Datasets are Hierarchical . 6
1.6 ZFS Volumes (zvols) . 7

2 Hardware and Apparatus 7
2.1 ZFS On Root (FreeBSD) . 7

2.1.1 Partitions . 14
2.1.2 ZFS Datasets . 16

2.2 ZFS On Linux (Raspberry Pi OS) . 17

3 Useful Features And Examples 24
3.1 Useful Pool Commands . 24

3.1.1 Useful Pool Scripts . 25
3.2 Export / Import . 26
3.3 Useful Dataset Commands . 27

3.3.1 Useful Dataset Scripts . 27
3.4 Snapshot / Rollback . 28
3.5 Send / Receive . 28

4 Appendicies 29
4.1 FreeBSD Installation Log . 29

4.1.1 Creating Disk Partitions . 29
4.1.2 Creating Encryption and the ZFS Pool / Datasets 30

List of Figures

1 Chart of number multipliers/prefixes . 1
2 FreeBSD Installation - Partition Layout Selection 8
3 FreeBSD Installation - Initial ZFS Configuration 8
4 FreeBSD Installation - List of pool types 9
5 FreeBSD Installation - Select drives for mirror 9
6 FreeBSD Installation - Return to ZFS Configuration screen 10
7 FreeBSD Installation - Enter a new pool name 11
8 FreeBSD Installation - Encrypt Disks set to YES 11
9 FreeBSD Installation - Set swap size to 4G per drive 12
10 FreeBSD Installation - Set swap to be encrypted 13

2

11 FreeBSD Installation - Proceed with Installation 13
12 FreeBSD Installation - Disk destruction warning 14

3

1 Introduction

The Zettabyte File System has a Wikipedia Page, which is well worth reading.

Important notes about ZFS:

1. Pooled storage: ZFS combines physical devices, and their associated partitions if
used, with data and file storage (datasets), giving ZFS an all encompassing view of
storage and its management. These pools are shared by the datasets (file systems)
and eliminate the fixed partition size / mounted file system problems of the past.
You can still run out of space, of course, but pools can be expanded without
affecting individual datasets.

2. Data integrity: ZFS has built in check-summing of files, which ensures data in-
tegrity. Redundancy is achieved via multiple physical devices or multiple on-disk
copies of files.

3. Performance: ZFS can use aggressive caching via the Adaptive Replacement Cache
(ARC) which is stored in system memory. It can also leverages fast-disk based read
caches, and write caches.

1.1 How Much Can it Hold?

The designed maximum capacity of ZFS, given sufficient physical devices, is 2128 bytes.
That’s an IPv6 address space worth of storage! I am unsure why this amount is not 1021

based on the Zetta- prefix it is named after.

1.2 It Needs Lots of Memory

There exists a caching subsystem called the Adaptive Replacement Cache (ARC) which
gobbles up memory, so using ZFS on anything less than 8GB will work, but is not
recommended. Memory use by ARC can be administratively limited, but memory is
important so the more, the better.

1.3 Data Storage Members (Disks / Partitions)

Usually, the lowest level of any file system was the physical device, be it the entire hard
drive, or a partition thereon, or even a hardware/software RAID configuration. This
isn’t the case with a ZFS dataset (file system equivalent) since a dataset resides within
a ZFS pool.

Partitions or even full disks are used to build a pool’s total storage. These partitions
or full disks are referred to as vdevs (virtual devices) in most ZFS documentation. In
some cases, vdevs can be encrypted before being added to a pool, thereby allowing for

4

https://en.wikipedia.org/wiki/ZFS

a fully encrypted pool, on top of which sit the datasets.

1.4 Pools

Pools are a logical collection of storage devices called vdevs that provide a large amount
(pool) of storage.

Pools are created using the zpool create command. and can be configured in various
ways:

1. Single disk: Can be useful for USB attached media, but does not provide redun-
dancy, in general, unless ‘copies=2’ is set on a dataset. I use these as backups.

The command below creates a single device pool using the full USB disk.

zpool create usbpool /dev/da0

2. Mirror n-way: Two or more vdevs can be used to create a mirrored pool, and this
is the most common form of redundancy. All my server systems use at least 2-way
mirrors for the OS and supporting services.

The command below creates a 2-way system mirror pool (syspool) using two full
NVMe drives. One drive can fail and the system will still be functional.

zpool create syspool mirror /dev/nvd0 /dev/nvd1

3. Raid-Z: This requires three (3) or more disks, but does provide more storage than
a mirrored pool. There are three types raidz=raidz1, raidz2 and raidz3. The
z-number corresponds to the number of parity vdevs (disks) used. Of course,
higher raid levels have a minimum number of vdevs. I use these as large pools for
automated network backups.

The command below creates a raidz2 backup pool (buppool) using five full SATA
drives. Two of the drives can fail before the pool itself fails.

zpool create buppool raidz2 /dev/ada0 /dev/ada1 /dev/ada2 /dev/ada3 /dev/ada4

A pool is often mounted on a mountpoint anchored at the root of the file system with a
directory of the same name as the pool. That is, buppool would be defaulted to mount
on /buppool. This mountpoint is also inherited as the base of any datasets created on
the pool. This is not the most useful way to mount a pool’s datasets. We’ll see a better
example when we look at how a FreeBSD installation sets up mount points and datasets.

1.5 Datasets

A dataset is the closest equivalent to a typical file system. When creating a dataset, the
pool it lives on is specified as the first part of the dataset’s path. For example:

5

zfs create buppool/backup1

We use the buppool pool and create a dataset on it named backup1. We can put a copy
of our important data into this dataset. We can create backup2 and so on as needed.
They will have mount points relative to /buppool and use storage space from the pool
in which they were created.

The nice thing about datasets is their many configurable properties. Some of these are:

1. Compression: A dataset can be setup to use compression by default, such as LZ4
or gzip.

2. Access time atime updates: When files are accessed, a property called atime is
often updated. This is usually undesirable in most use cases, as it causes file
changes in the dataset, which are propagated to snapshots, thereby increasing
storage space requirements. Incremental backup strategies can also be impacted.

Therefore, it is common to set noatime on a dataset, which inhibits this access
time update.

3. exec or noexec: Determines if files can be set as executable on the dataset, a
common Unix file system attribute.

4. setuid or nosetuid: Another common Unix file system attribute which determines
if an executable can be run as a specific user, usually root.

A dataset is created directly on a pool and usually inherits the pool’s mountpoint as
the leading part of the dataset’s final mountpoint. Sometimes this is not what you want
and you need to create the dataset using some options like so:

zfs create -o mountpoint=/data buppool/data

The above command creates a new dataset that is mounted on /data, rather than the
inherited value of /buppool/data.

1.5.1 Datasets are Hierarchical

Datasets inherit some of their properties from their parent. In some cases this is the
base pool dataset, but in most useful cases it is a dataset created to specify a set of
features that all child datasets will share. A good example of this would be the typical
/usr directory structure:

zfs create -o mountpoint=/usr -o canmount=off syspool/usr

Note that canmount is not an inheritable property, but acts in this case to help with the
propagation of /usr as a base mount point for further child datasets:

6

zfs create syspool/usr/local

zfs create syspool/usr/src

zfs create syspool/usr/home

Each of these datasets now get mounted at /usr/local, /usr/src, and /usr/home.
They can also be individually managed and given separate sets of properties if desired.

1.6 ZFS Volumes (zvols)

Apart from datasets, there are also volumes called zvols (not covered here), which act
like disk devices. This allows for other files systems, like UFS, to be created on a ZFS
volume. These volumes benefit from snapshots and other ZFS features.

2 Hardware and Apparatus

Enough of the boring stuff, let’s see some ZFS in action. Technologies used in this
demonstration are:

• Miniforum UM690Pro Mini PC 32GB, dual NVMe (FreeBSD)

• Raspberry Pi 4B 8GB RAM (Raspberry Pi OS)

• 2 USB attached M.2 NVMe drives

• 2 USB attached M.2 SATA drives

• Network switch and cabling

• USB HDMI capture device

• HDMI switch / splitter and cabling

2.1 ZFS On Root (FreeBSD)

First, I’d like to introduce the FreeBSD documentation on ZFS 2. It is excellent.

We’ll do a quick install of FreeBSD to show one method of using ZFS as a root file system
on a 2-way disk mirror. In this document, some steps of the installation are omitted,
since they have no relevance to ZFS.

Choose to setup FreeBSD using Auto (ZFS):

2https://docs.freebsd.org/en/books/handbook/zfs/

7

https://docs.freebsd.org/en/books/handbook/zfs/

Figure 2: FreeBSD Installation - Partition Layout Selection

We are greeted with the initial un-configured ZFS configuration screen:

Figure 3: FreeBSD Installation - Initial ZFS Configuration

8

Press T to choose the pool type option and hit the ENTER key to initiate the action:

Figure 4: FreeBSD Installation - List of pool types

Press m to choose the mirror option and hit the ENTER key to initiate the action:

Figure 5: FreeBSD Installation - Select drives for mirror

9

We’ve selected both drives for a two way mirror.

We are returned to the ZFS Configuration screen, where we still have some options to
set.

Figure 6: FreeBSD Installation - Return to ZFS Configuration screen

For the rest of the options, I usually setup a FreeBSD system as follows:

1. Use N to set the pool name so it is unique to the system. This helps with backups
and keeping track of various systems.

10

Figure 7: FreeBSD Installation - Enter a new pool name

2. Force 4K sectors is always YES.

3. Use E to select Encrypt disks and press the SPACE bar to toggle the setting to YES.
We will be asked for a passphrase in a moment.

Figure 8: FreeBSD Installation - Encrypt Disks set to YES

11

4. Partition scheme is usually fine to leave at GPT (BIOS and UEFI) compatible.

5. Use S to select Swap Size and press ENTER to set a swap size. I usually set a
minimum of 4GB per drive in the mirror.

Figure 9: FreeBSD Installation - Set swap size to 4G per drive

6. Use M to select the Mirror Swap option and press the SPACE bar until NO is selected.
No need to mirror swap.

7. Not all options are shown on the main ZFS Configuration screen, since it is small
in our example, so the down arrow key will bring the remaining option(s) into
view.

8. Use W to select the Encrypt Swap option and press the SPACE bar until YES is
selected. It’s a good idea to keep temporary memory protected on the disk, since
there could be passwords stored in application memory.

12

Figure 10: FreeBSD Installation - Set swap to be encrypted

That concludes the ZFS Configuration, so we press the up arrow until we reach the
Install - Proceed with Installation option and press ENTER to select it.

Figure 11: FreeBSD Installation - Proceed with Installation

13

The next step is to begin setting up the drives, so we are warned that proceeding will
destroy our disks:

Figure 12: FreeBSD Installation - Disk destruction warning

The rest of the installation is just standard FreeBSD, so we will look at the results after
bsdinstall has completed. As shown in appendix 4.1, there is much useful information
to be extracted from the installation log found at /var/log/bsdinstall log, but we’ll
just look at the currently running system’s ZFS configuration.

2.1.1 Partitions

It is useful to examine how the bsdinstall program partitioned the drives and used them
as vdevs. The two drives are named nvd0 and nvd1. The gpart show -p command
displays the full partition table on each drive with the full partition name (i.e. nvd0p4)
listed.

mv@zfsdemo:~ % gpart show -p

=> 40 1953525088 nvd0 GPT (932G)

40 532480 nvd0p1 efi (260M)

532520 1024 nvd0p2 freebsd-boot (512K)

533544 984 - free - (492K)

534528 8388608 nvd0p3 freebsd-swap (4.0G)

8923136 1944600576 nvd0p4 freebsd-zfs (927G)

1953523712 1416 - free - (708K)

14

=> 40 1953525088 nvd1 GPT (932G)

40 532480 nvd1p1 efi (260M)

532520 1024 nvd1p2 freebsd-boot (512K)

533544 984 - free - (492K)

534528 8388608 nvd1p3 freebsd-swap (4.0G)

8923136 1944600576 nvd1p4 freebsd-zfs (927G)

1953523712 1416 - free - (708K)

The partition names can be seen in the /dev directory:

mv@zfsdemo:~ % ls /dev/nvd*

/dev/nvd0 /dev/nvd0p3 /dev/nvd0p4.eli /dev/nvd1p2 /dev/nvd1p4

/dev/nvd0p1 /dev/nvd0p3.eli /dev/nvd1 /dev/nvd1p3 /dev/nvd1p4.eli

/dev/nvd0p2 /dev/nvd0p4 /dev/nvd1p1 /dev/nvd1p3.eli

The encryption can be seen on the devices with the .eli extension. Indeed, /dev/nvd0p3.eli
is one of our encrypted swap devices, shown here in the /etc/fstab file:

mv@zfsdemo:~ % cat /etc/fstab

Device Mountpoint FStype Options Dump Pass#

/dev/gpt/efiboot0 /boot/efi msdosfs rw 2 2

/dev/nvd0p3.eli none swap sw 0 0

/dev/nvd1p3.eli none swap sw 0 0

The /dev/nvd0p4.eli device is part of the encrypted ZFS mirror pool as shown in our
zpool status command:

mv@zfsdemo:~ % zpool status

pool: fpool

state: ONLINE

config:

NAME STATE READ WRITE CKSUM

fpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

nvd0p4.eli ONLINE 0 0 0

nvd1p4.eli ONLINE 0 0 0

errors: No known data errors

Note the discrepancy in the pool name (fpool rather than zfsdemo), as I recorded the
setup process after the fact.

15

2.1.2 ZFS Datasets

We can see the ZFS datasets chosen by the installer in several ways. The first is to look
at the zpool history command:

root@zfsdemo:~ # zpool history

History for ’fpool’:

2024-06-14.19:49:25 zpool create -o altroot=/mnt -O compress=lz4 -O atime=off

-m none -f fpool mirror nvd0p4.eli nvd1p4.eli

2024-06-14.19:49:25 zfs create -o mountpoint=none fpool/ROOT

2024-06-14.19:49:25 zfs create -o mountpoint=/ fpool/ROOT/default

2024-06-14.19:49:25 zfs create -o mountpoint=/tmp -o exec=on -o setuid=off fpool/tmp

2024-06-14.19:49:25 zfs create -o mountpoint=/usr -o canmount=off fpool/usr

2024-06-14.19:49:25 zfs create fpool/usr/home

2024-06-14.19:49:25 zfs create -o setuid=off fpool/usr/ports

2024-06-14.19:49:25 zfs create fpool/usr/src

2024-06-14.19:49:25 zfs create -o mountpoint=/var -o canmount=off fpool/var

2024-06-14.19:49:25 zfs create -o exec=off -o setuid=off fpool/var/audit

2024-06-14.19:49:25 zfs create -o exec=off -o setuid=off fpool/var/crash

2024-06-14.19:49:25 zfs create -o exec=off -o setuid=off fpool/var/log

2024-06-14.19:49:25 zfs create -o atime=on fpool/var/mail

2024-06-14.19:49:25 zfs create -o setuid=off fpool/var/tmp

2024-06-14.19:49:25 zfs set mountpoint=/fpool fpool

2024-06-14.19:49:25 zpool set bootfs=fpool/ROOT/default fpool

2024-06-14.19:49:25 zpool set cachefile=/mnt/boot/zfs/zpool.cache fpool

2024-06-14.19:49:25 zfs set canmount=noauto fpool/ROOT/default

The second is to use zfs list:

root@zfsdemo:~ # zfs list

NAME USED AVAIL REFER MOUNTPOINT

fpool 1.50G 890G 96K /fpool

fpool/ROOT 1.50G 890G 96K none

fpool/ROOT/13.2-RELEASE_2024-06-14_195559 8K 890G 1.27G /

fpool/ROOT/default 1.50G 890G 1.29G /

fpool/tmp 172K 890G 172K /tmp

fpool/usr 456K 890G 96K /usr

fpool/usr/home 168K 890G 168K /usr/home

fpool/usr/ports 96K 890G 96K /usr/ports

fpool/usr/src 96K 890G 96K /usr/src

fpool/var 704K 890G 96K /var

fpool/var/audit 96K 890G 96K /var/audit

fpool/var/crash 96K 890G 96K /var/crash

fpool/var/log 224K 890G 224K /var/log

16

fpool/var/mail 96K 890G 96K /var/mail

fpool/var/tmp 96K 890G 96K /var/tmp

Another is to check the mount command:

root@zfsdemo:~ # mount

fpool/ROOT/default on / (zfs, local, noatime, nfsv4acls)

devfs on /dev (devfs)

/dev/gpt/efiboot0 on /boot/efi (msdosfs, local)

fpool/tmp on /tmp (zfs, local, noatime, nosuid, nfsv4acls)

fpool on /fpool (zfs, local, noatime, nfsv4acls)

fpool/usr/ports on /usr/ports (zfs, local, noatime, nosuid, nfsv4acls)

fpool/usr/src on /usr/src (zfs, local, noatime, nfsv4acls)

fpool/var/log on /var/log (zfs, local, noatime, noexec, nosuid, nfsv4acls)

fpool/usr/home on /usr/home (zfs, local, noatime, nfsv4acls)

fpool/var/tmp on /var/tmp (zfs, local, noatime, nosuid, nfsv4acls)

fpool/var/crash on /var/crash (zfs, local, noatime, noexec, nosuid, nfsv4acls)

fpool/var/mail on /var/mail (zfs, local, nfsv4acls)

fpool/var/audit on /var/audit (zfs, local, noatime, noexec, nosuid, nfsv4acls)

2.2 ZFS On Linux (Raspberry Pi OS)

ZFS on Linux (ZoL) is currently supported on Raspberry Pi OS, and an example of how
to set it up is shown below.

We are using:

pi@pi4-8G:~ $ uname -a

Linux pi4-8G 6.6.31+rpt-rpi-v8 #1 SMP PREEMPT Debian 1:6.6.31-1+rpt1

(2024-05-29) aarch64 GNU/Linux

root@pi4-8G:~# cat /etc/os-release

PRETTY_NAME="Debian GNU/Linux 12 (bookworm)"

NAME="Debian GNU/Linux"

VERSION_ID="12"

VERSION="12 (bookworm)"

VERSION_CODENAME=bookworm

ID=debian

I learned most of this from a youtube video at: https://www.youtube.com/watch?v=5vQRGxTTqPw

Install some required packages, making sure the package database is up to date first. The
installation of the three packages (raspberrypi-kernel-headers zfs-dkms zfsutils-linux)
will take some time (almost an hour and a half for this installation).

17

$ sudo apt update

$ sudo apt install raspberrypi-kernel-headers zfs-dkms zfsutils-linux

You will get a license popup noting that the OpenZFS license is not compatible with
the GPL license. We are not using the system in a manner that will cause this license
incompatibility to be an issue.

Make sure the system is fully upgraded, and then reboot.

$ sudo apt full-upgrade

$ sudo reboot

Now that the system has all the tools and kernel modules for ZFS, we can begin to make
a ZFS storage pool.

You have to manage the disks you’ll use. In many cases, you can just use the full disk
in the pool creation command, but we’ll do something a little different.

We use the gdisk command, since it supports ZFS partitions, whereas others such as
parted or fdisk do not.

root@pi4-8G:~# gdisk /dev/sda

GPT fdisk (gdisk) version 1.0.9

Partition table scan:

MBR: not present

BSD: not present

APM: not present

GPT: not present

Creating new GPT entries in memory.

Command (? for help):

It is useful to get a list of commands:

Command (? for help): ?

b back up GPT data to a file

c change a partition’s name

d delete a partition

i show detailed information on a partition

l list known partition types

n add a new partition

o create a new empty GUID partition table (GPT)

p print the partition table

q quit without saving changes

18

r recovery and transformation options (experts only)

s sort partitions

t change a partition’s type code

v verify disk

w write table to disk and exit

x extra functionality (experts only)

? print this menu

We use o to create a new GPT table.

Command (? for help): o

This option deletes all partitions and creates a new protective MBR.

Proceed? (Y/N): y

Command (? for help):

Now we add a ZFS partition type on most of the disk. We specify 900G, which is
not the whole disk, but this allows us to easily create a replacement vdev in the case
of failure. Sometimes using the whole disk will result in slightly different sizes from
different manufacturers, and this can cause problems when a new disk is a few bytes too
small.

The default alignment for partitions is now recommended to land on 1MB boundaries,
which gdisk uses as a default (first sector = 2048 below).

Command (? for help): n

Partition number (1-128, default 1):

First sector (34-1953525134, default = 2048) or {+-}size{KMGTP}:

Last sector (2048-1953525134, default = 1953523711) or {+-}size{KMGTP}: 900G

Current type is 8300 (Linux filesystem)

Hex code or GUID (L to show codes, Enter = 8300): a504

Changed type of partition to ’FreeBSD ZFS’

The magic number a504 can be found using the list partition types command l.

Command (? for help): l

Type search string, or <Enter> to show all codes: zfs

a504 FreeBSD ZFS a584 Midnight BSD ZFS

bf01 Solaris /usr & Mac ZFS

We will also name the partition so we can use a handy /dev/disk/by-partlabel/ device
name, rather than /dev/sda1 and so on.

Command (? for help): c

Using 1

Enter name: pipool0

19

Now we print and then save the partition table:

Command (? for help): p

Disk /dev/sda: 1953525168 sectors, 931.5 GiB

Model: Tech

Sector size (logical/physical): 512/4096 bytes

Disk identifier (GUID): C1B210AD-3108-40FF-9536-D69AA53A5C09

Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33

First usable sector is 34, last usable sector is 1953525134

Partitions will be aligned on 2048-sector boundaries

Total free space is 66090348 sectors (31.5 GiB)

Number Start (sector) End (sector) Size Code Name

1 2048 1887436800 900.0 GiB A504 pipool0

Saving:

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING

PARTITIONS!!

Do you want to proceed? (Y/N): y

OK; writing new GUID partition table (GPT) to /dev/sda.

The operation has completed successfully.

Now if we list the /dev/disk/by-partlabel, we should see our new label:

oot@pi4-8G:~# ls -la /dev/disk/by-partlabel/

total 0

drwxr-xr-x 2 root root 60 Jun 21 19:15 .

drwxr-xr-x 9 root root 180 Jun 21 19:15 ..

lrwxrwxrwx 1 root root 10 Jun 21 19:15 pipool0 -> ../../sda1

Now we can do the same partitioning for the second USB device using the same com-
mands as above, except using /dev/sdb and a label of pipool1.

root@pi4-8G:~# gdisk /dev/sdb

GPT fdisk (gdisk) version 1.0.9

Partition table scan:

MBR: not present

BSD: not present

APM: not present

GPT: not present

20

Creating new GPT entries in memory.

Command (? for help): o

This option deletes all partitions and creates a new protective MBR.

Proceed? (Y/N): y

Command (? for help): n

Partition number (1-128, default 1):

First sector (34-1953525134, default = 2048) or {+-}size{KMGTP}:

Last sector (2048-1953525134, default = 1953523711) or {+-}size{KMGTP}: 900G

Current type is 8300 (Linux filesystem)

Hex code or GUID (L to show codes, Enter = 8300): a504

Changed type of partition to ’FreeBSD ZFS’

Command (? for help): c

Using 1

Enter name: pipool1

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING

PARTITIONS!!

Do you want to proceed? (Y/N): y

OK; writing new GUID partition table (GPT) to /dev/sdb.

The operation has completed successfully.

We have two new 900GiB vdevs which we can use to create a ZFS mirror pool. They
are listed by partition label:

root@pi4-8G:~# ls -la /dev/disk/by-partlabel/

total 0

drwxr-xr-x 2 root root 80 Jun 21 19:19 .

drwxr-xr-x 9 root root 180 Jun 21 19:15 ..

lrwxrwxrwx 1 root root 10 Jun 21 19:15 pipool0 -> ../../sda1

lrwxrwxrwx 1 root root 10 Jun 21 19:19 pipool1 -> ../../sdb1

Let’s issue the zpool command:

root@pi4-8G:~# zpool create mirror \

/dev/disk/by-partlabel/pipool0 /dev/disk/by-partlabel/pipool1

cannot create ’mirror’: name is reserved

pool name may have been omitted

21

Whoops, forgot the pool name:

root@pi4-8G:~# zpool create pipool mirror \

/dev/disk/by-partlabel/pipool0 /dev/disk/by-partlabel/pipool1

Let’s see the results:

root@pi4-8G:~# zpool status

pool: pipool

state: ONLINE

config:

NAME STATE READ WRITE CKSUM

pipool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

pipool0 ONLINE 0 0 0

pipool1 ONLINE 0 0 0

errors: No known data errors

Let’s put a dataset on it:

root@pi4-8G:~# zfs create pipool/data

Use our zfs list command:

root@pi4-8G:~# zfs list

NAME USED AVAIL REFER MOUNTPOINT

pipool 516K 868G 96K /pipool

pipool/data 96K 868G 96K /pipool/data

We can take a snapshot of our new empty data dataset, so we can demonstrate a
rollback command.

oot@pi4-8G:~# zfs snap pipool/data@empty

Let’s list everything in the pool:

root@pi4-8G:~# zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

pipool 600K 868G 96K /pipool

pipool/data 96K 868G 96K /pipool/data

pipool/data@empty 0B - 96K -

Put some random noise into a file on the pipool/data dataset:

root@pi4-8G:~# cd /pipool/data

22

root@pi4-8G:/pipool/data# dd if=/dev/zero of=zeros bs=1M count=2

2+0 records in

2+0 records out

2097152 bytes (2.1 MB, 2.0 MiB) copied, 0.00777732 s, 270 MB/s

root@pi4-8G:/pipool/data# ls -lah

total 1.5K

drwxr-xr-x 2 root root 3 Jun 21 19:33 .

drwxr-xr-x 3 root root 3 Jun 21 19:26 ..

-rw-r--r-- 1 root root 2.0M Jun 21 19:33 zeros

Our snapshot now has some data used (64K):

root@pi4-8G:/pipool/data# zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

pipool 760K 868G 96K /pipool

pipool/data 160K 868G 96K /pipool/data

pipool/data@empty 64K - 96K -

So our snapshot does not have the zeros file in it. Since a file with nothing but zeros is
not usually useful, we’ll rollback our dataset as a demonstration. When we rollback,
all changes in the dataset since the snapshot are discarded. Be careful when doing this.

root@pi4-8G:/pipool/data# zfs rollback pipool/data@empty

We can check our zfs list and look for our zeros file, noting it is gone.

root@pi4-8G:/pipool/data# zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

pipool 684K 868G 96K /pipool

pipool/data 96K 868G 96K /pipool/data

pipool/data@empty 0B - 96K -

root@pi4-8G:/pipool/data# ls -la

total 1

drwxr-xr-x 2 root root 2 Jun 21 19:26 .

drwxr-xr-x 3 root root 3 Jun 21 19:26 ..

Here are some other useful commands:

root@pi4-8G:/pipool/data# zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

pipool 896G 752K 896G - - 0% 0% 1.00x ONLINE -

root@pi4-8G:/pipool/data# zpool history

History for ’pipool’:

2024-06-21.19:23:33 zpool create pipool mirror /dev/disk/by-partlabel/pipool0 /dev/disk/by-partlabel/pipool1

2024-06-21.19:26:53 zfs create pipool/data

2024-06-21.19:30:01 zfs snap pipool/data@empty

23

2024-06-21.19:39:14 zfs rollback pipool/data@empty

We can export the pipool in order to remove the drives:

root@pi4-8G:~# zpool export pipool

root@pi4-8G:~# zpool status

no pools available

Pull the drives out.

3 Useful Features And Examples

This section is divided into feature/example subsections, so as a feature is introduced,
we can see an example of it immediately. Features that we’ll examine:

1. Useful pool commands.

2. Exporting and importing pools for transferring data between systems.

3. Useful dataset commands.

4. Using snapshot / rollback.

5. Mentioning zfs send and zfs receive with optional SSH tunneling.

3.1 Useful Pool Commands

These are the zpool commands that I use fairly regularly.

1. zpool history

This is a great command for reviewing and reproducing how a pool was initial
created, as well as all the operations taken on datasets. Truly fantastic.

2. zpool status

This is the second best command in that it shows the current state of the pool and
its structure. You can find out whether disks have failed and the status of scrubs
or resilvers.

3. zpool scrub

This command causes the ZFS system to validate all file system checksums for the
entire pool. It will automatically repair damage if you have a redundant pool and
alert you to problems with single device pools. It is often run as a periodic cron

job.

4. zpool list

If you have more than one pool, this command will show a nice list of the pools,

24

their space statistics and other information.

3.1.1 Useful Pool Scripts

Here is a cron script that I run daily called /root/bin/cron-zpool.sh:

#!/bin/sh

#

Check pool status daily

#

zpool list

zpool status -v

zpool iostat

zpool history

Its /etc/crontab entry looks like this:

Make sure to keep an eye on ZFS pools

1 7 * * * root /root/bin/cron-zpool.sh

The output of this command comes via an email and looks like this:

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

jpool 1.81T 220G 1.60T - - 7% 11% 1.00x ONLINE -

mpool 1.80T 121G 1.68T - - 0% 6% 1.00x ONLINE -

poupool 1.81T 76.3G 1.74T - - 31% 4% 1.00x ONLINE -

pool: jpool

state: ONLINE

scan: scrub repaired 0B in 00:49:23 with 0 errors on Tue Jun 11 04:17:14 2024

config:

NAME STATE READ WRITE CKSUM

jpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

ada0p1.eli ONLINE 0 0 0

ada2p1.eli ONLINE 0 0 0

ada4p1.eli ONLINE 0 0 0

errors: No known data errors

pool: mpool

state: ONLINE

scan: scrub repaired 0B in 00:04:29 with 0 errors on Sun Jun 9 03:06:38 2024

config:

NAME STATE READ WRITE CKSUM

mpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

25

ada3p4.eli ONLINE 0 0 0

ada1p4.eli ONLINE 0 0 0

errors: No known data errors

pool: poupool

state: ONLINE

scan: scrub repaired 0B in 00:01:16 with 0 errors on Tue Jun 11 03:29:11 2024

config:

NAME STATE READ WRITE CKSUM

poupool ONLINE 0 0 0

nvd0 ONLINE 0 0 0

nvd1 ONLINE 0 0 0

errors: No known data errors

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

jpool 220G 1.60T 1 17 281K 395K

mpool 121G 1.68T 1 16 153K 244K

poupool 76.3G 1.74T 2 32 56.9K 1.95M

---------- ----- ----- ----- ----- ----- -----

History for ’jpool’:

2023-01-02.18:06:34 zpool create jpool mirror ada0p1.eli ada1p1.eli ada3p1.eli

2023-01-02.21:49:21 zfs create -o mountpoint=/usr/jails -o canmount=off jpool/jails

2023-01-02.21:52:20 zfs create jpool/jails/dns

2023-01-02.22:18:40 zfs create jpool/jails/pkg

2023-01-06.17:12:07 zfs rename jpool/jails/dns jpool/jails/dnsprimary

2023-01-09.20:22:34 zfs create jpool/jails/minimal

...

3.2 Export / Import

If your storage pool drives are removable, you must zpool export the pool before dis-
connecting the drives. All datasets are automatically un-mounted during the export.
When you plug them in again, you must zpool import the pool.

When you import a (possibly unknown) pool for the first time on a system, always use
the alternative root option so as to not clobber any already mounted file systems. For
example, after exporting pipool, we can import it again with an alternate root mount
point:

zpool import -R /mnt pipool

root@pi4-8G:~# zfs list

NAME USED AVAIL REFER MOUNTPOINT

26

pipool 776K 868G 96K /mnt/pipool

pipool/data 152K 868G 96K /mnt/pipool/data

The -R (altroot option) will force any datasets to be mounted relative to the /mnt mount
point. This is critical if you are importing a backup that has a copy of your root file
system dataset on it. You don’t want your running root file system (/) suddenly changing
on you.

We saw an example of zfs export in our Raspberry Pi demonstration.

zpool export mypool

3.3 Useful Dataset Commands

These commands help you examine or manipulate datasets.

1. zfs list

Straightforward, shows datasets. Can use the -t option to specify snap or all to
get snapshots only or all datasets including their snapshots, respectively.

zfs list -t all

2. zfs rename

It can be useful to rename a dataset or snapshot. I use this if I’ve made an error
in naming.

zfs rename jpool/jails/dns jpool/jails/dnsprimary

3. zfs mount / unmount

These allow you to mount and un-mount datasets as needed. Most of this is done
automatically.

zfs unmount pipool/data

3.3.1 Useful Dataset Scripts

Here is a script to keep up to seven days of daily snapshots (run as a root cron job).

#!/bin/sh

#

A script to create a full copy of the local zfs pool

for transfer to the das backup.

#

The 7 day rolling snap was extracted from a man zfs example.

Should be run daily from root’s crontab.

#

27

zfsroot="jpool"

zfs destroy -r ${zfsroot}@7daysago

zfs rename -r ${zfsroot}@6daysago @7daysago

zfs rename -r ${zfsroot}@5daysago @6daysago

zfs rename -r ${zfsroot}@4daysago @5daysago

zfs rename -r ${zfsroot}@3daysago @4daysago

zfs rename -r ${zfsroot}@2daysago @3daysago

zfs rename -r ${zfsroot}@yesterday @2daysago

zfs rename -r ${zfsroot}@today @yesterday

zfs snapshot -r ${zfsroot}@today

3.4 Snapshot / Rollback

A snapshot is a point in time reference of the state of the file data stored on a dataset.
Snapshots are instant and initially take up no space. After a snapshot is taken, new files
and modifications of files cause new storage blocks to be used on the live file system.
This is known as copy-on-write. The snapshot will reference the old non-modified blocks
and will have no relation with the new file blocks.

Always take a recursive snapshot (using the -r option) before doing system updates/upgrades,
so you can easily rollback to the previous state if the update/upgrades fails to please
you.

The Raspberry Pi demo showed a snapshot and rollback example.

3.5 Send / Receive

The zfs send and zfs recv commands allow for the movement and temporary copying
of datasets, either into any pool, or a standalone file.

I use this to make copies of jails and other business data. This is a powerful feature that
can be tunneled over SSH. I don’t have time to cover it today, but your own research
into the possibilities will reward you.

You can easily use a template dataset that you make a copy of using zfs send piped into
zfs recv. I used this to create a template jail for my services and then made multiple
copies, as needed.

Here is some pool history showing the process:

023-07-30.22:19:59 zfs snap jpool/jails/minimal@for_local_jails

2023-07-30.22:20:37 zfs recv -Fv jpool/jails/dnsprimary

2023-07-30.22:20:58 zfs recv -Fv jpool/jails/ldap

28

2023-07-31.22:55:41 zfs recv -Fv jpool/jails/sccs

You don’t see the zfs send command, but a typical one looks like:

zfs send -vR jpool/jails/minimal@for_local_jails | zfs recv -Fv jpool/jails/service1

You end up with an exact copy of the minimal jail for use as a new service.

4 Appendicies

For completeness, these appendix entries may contain useful reference material.

4.1 FreeBSD Installation Log

The installation of FreeBSD using the bsdinstall program leaves a fairly detailed log
file at /var/log/bsdinstall log. This file can be mined for the actual commands used
during the installation process. I wrote a (very ugly) script in python to extract the
commands associated with disk partitioning and ZFS configuration. The results for our
example FreeBSD install follow.

NOTE: Don’t run any of these scripts on your own system. Very bad things will happen.

4.1.1 Creating Disk Partitions

This is a shell script created from the section of the bsdinstall log file reporting on
the partitioning of disks. There seem to be gaps with respect to commands regarding
the efiboot partition, but that is out of scope at this time.

mv@think:~/tmp % cat zfs_create_diskpart.sh

#!/bin/sh

#zfs_create_diskpart

gpart destroy -F "nvd0"

graid delete "nvd0"

zpool labelclear -f "/dev/nvd0"

gpart create -s gpt "nvd0"

gpart destroy -F "nvd0"

gpart create -s gpt "nvd0"

gpart add -a 4k -l efiboot0 -t efi -s 260M "nvd0"

newfs_msdos "/dev/gpt/efiboot0"

printf "$FSTAB_FMT" "/dev/gpt/efiboot0" "/boot/efi" "msdosfs" "rw" "2" "2" >> "/tmp/bsdinstall_etc/fstab"

gpart add -a 4k -l gptboot0 -t freebsd-boot -s 512k "nvd0"

gpart bootcode -b "/boot/pmbr" -p "/boot/gptzfsboot" -i 2 "nvd0"

gpart add -a 1m -l swap0 -t freebsd-swap -s 4294967296b "nvd0"

zpool labelclear -f "/dev/nvd0p3"

gpart add -a 1m -l zfs0 -t freebsd-zfs "nvd0"

zpool labelclear -f "/dev/nvd0p4"

printf "$FSTAB_FMT" "/dev/nvd0p3.eli" "none" "swap" "sw" "0" "0" >> "/tmp/bsdinstall_etc/fstab"

gpart destroy -F "nvd1"

29

graid delete "nvd1"

zpool labelclear -f "/dev/nvd1"

gpart create -s gpt "nvd1"

gpart destroy -F "nvd1"

gpart create -s gpt "nvd1"

gpart add -a 4k -l efiboot1 -t efi -s 260M "nvd1"

gpart add -a 4k -l gptboot1 -t freebsd-boot -s 512k "nvd1"

gpart bootcode -b "/boot/pmbr" -p "/boot/gptzfsboot" -i 2 "nvd1"

gpart add -a 1m -l swap1 -t freebsd-swap -s 4294967296b "nvd1"

zpool labelclear -f "/dev/nvd1p3"

gpart add -a 1m -l zfs1 -t freebsd-zfs "nvd1"

zpool labelclear -f "/dev/nvd1p4"

printf "$FSTAB_FMT" "/dev/nvd1p3.eli" "none" "swap" "sw" "0" "0" >> "/tmp/bsdinstall_etc/fstab"

4.1.2 Creating Encryption and the ZFS Pool / Datasets

Next is a shell script created from the section of the bsdinstall log file reporting on
the configuration of the ZFS details.

mv@think:~/tmp % cat zfs_create_boot.sh

#!/bin/sh

#zfs_create_boot

:> "/tmp/bsdinstall_etc/fstab"

printf "$FSTAB_FMT" "# Device" "Mountpoint" "FStype" "Options" "Dump" "Pass#" >> "/tmp/bsdinstall_etc/fstab"

zpool destroy "fpool"

sysctl vfs.zfs.min_auto_ashift=12

#!/bin/sh

#zfs_create_boot

kldload aesni

geli init -bg -e AES-XTS -J - -l 256 -s 4096 "nvd0p4"

geli attach -j - "nvd0p4"

geli init -bg -e AES-XTS -J - -l 256 -s 4096 "nvd1p4"

geli attach -j - "nvd1p4"

zpool create -o altroot=/mnt -O compress=lz4 -O atime=off -m none -f "fpool" mirror nvd0p4.eli nvd1p4.eli

zfs create -o mountpoint=none "fpool/ROOT"

zfs create -o mountpoint=/ "fpool/ROOT/default"

zfs create -o mountpoint=/tmp -o exec=on -o setuid=off "fpool/tmp"

zfs create -o mountpoint=/usr -o canmount=off "fpool/usr"

zfs create "fpool/usr/home"

zfs create -o setuid=off "fpool/usr/ports"

zfs create "fpool/usr/src"

zfs create -o mountpoint=/var -o canmount=off "fpool/var"

zfs create -o exec=off -o setuid=off "fpool/var/audit"

zfs create -o exec=off -o setuid=off "fpool/var/crash"

zfs create -o exec=off -o setuid=off "fpool/var/log"

zfs create -o atime=on "fpool/var/mail"

zfs create -o setuid=off "fpool/var/tmp"

zfs set "mountpoint=/fpool" "fpool"

mkdir -p "/mnt/tmp"

chmod 1777 "/mnt/tmp"

mkdir -p "/mnt/var/tmp"

chmod 1777 "/mnt/var/tmp"

zpool set bootfs="fpool/ROOT/default" "fpool"

mkdir -p "/mnt/boot/zfs"

zpool set cachefile="/mnt/boot/zfs/zpool.cache" "fpool"

zfs set "canmount=noauto" "fpool/ROOT/default"

30

echo "zfs_enable=\"YES\"" >> "/tmp/bsdinstall_etc/rc.conf.zfs"

echo "kern.geom.label.disk_ident.enable=\"0\"" >> "/tmp/bsdinstall_boot/loader.conf.zfs"

echo "kern.geom.label.gptid.enable=\"0\"" >> "/tmp/bsdinstall_boot/loader.conf.zfs"

echo "vfs.zfs.min_auto_ashift=12" >> "/tmp/bsdinstall_etc/sysctl.conf.zfs"

echo "aesni_load=\"YES\"" >> "/tmp/bsdinstall_boot/loader.conf.aesni"

echo "geom_eli_load=\"YES\"" >> "/tmp/bsdinstall_boot/loader.conf.geli"

31

	Introduction
	How Much Can it Hold?
	It Needs Lots of Memory
	Data Storage Members (Disks / Partitions)
	Pools
	Datasets
	Datasets are Hierarchical

	ZFS Volumes (zvols)

	Hardware and Apparatus
	ZFS On Root (FreeBSD)
	Partitions
	ZFS Datasets

	ZFS On Linux (Raspberry Pi OS)

	Useful Features And Examples
	Useful Pool Commands
	Useful Pool Scripts

	Export / Import
	Useful Dataset Commands
	Useful Dataset Scripts

	Snapshot / Rollback
	Send / Receive

	Appendicies
	FreeBSD Installation Log
	Creating Disk Partitions
	Creating Encryption and the ZFS Pool / Datasets

