
Basic Git Home “Remote” Server Using
SSH With Gitolite

Mark G.

January 13, 2024

An installation and configuration of a source code control system (SCCS).
The SCCS uses the Secure Shell (SSH) protocol, the Git version control
system (VCS), and a software package named Gitolite. A user of the system
provides a public key that is tied to configured identities for the purposes of
access control to git repositories. The repositories configured on this server
are intended to be used as remotes, in terms of how git defines a remote.

This demonstration is hosted on a FreeBSD 13.x operating system running
on a raspberry pi 4.

Files for this presentation can be found at: Presentations for VicPiMakers.

1

https://www.palaceofretention.ca/vp/

Contents

1 Introduction 3
1.1 Why Gitolite? . 3

2 Remote Host System Configuration 3
2.1 Remote Host Admin User . 4
2.2 SSH Server and System Startup . 5

2.2.1 System Startup . 5
2.3 SSH Key Pairs for the Git Client and Admin Users 6

2.3.1 Client SSH Config Settings . 8
2.3.2 Test SSH Keys and Disable Passwords 9

3 Gitolite / Git Installation 10
3.1 Client Git . 10
3.2 Remote Host Server Gitolite and Git . 11

4 Gitolite Server Configuration 13
4.1 Git User . 13
4.2 Gitolite Setup . 14
4.3 Gitolite Admin Repository . 16
4.4 File conf/gitolite.conf . 17
4.5 Directory keydir/ . 17
4.6 Add a User and Their Repository . 18
4.7 Commit the New User and Repository . 18
4.8 Creating and Linking the User Repository 20
4.9 Summary: Add Other Users and Repositories 22

5 Git Configuration Files 23

6 Git Working System Configuration 24
6.1 File Line Endings . 24
6.2 Ignoring Files . 24
6.3 git status . 25
6.4 git log . 25
6.5 Changing Remote . 26

7 Appendix: DNS Name for Service 27

2

1 Introduction

For quite a few years, I used a number of inefficient methods for keeping my documents
and code files synchronized between my various laptops and desktop workstations.

Some of the methods included:

• Copying to USB drives and plugging them into the computers that needed updated
copies of the files.

• Using fancy programs like rsync and syncthing.

• Using SSH’s secure copy program scp.

These ended up not working very well for one reason or another.

Why not just stick to one development system only? My main personal reason is to vary
the ergonomics of my computing enough to eliminate repetitive stress injuries.

My latest solution is to use a source code control system (SCCS), also known as a
version control system (VCS). There were a few to choose from, the main two being
subversion and git. I had experience with subversion, but settled on git because it
is more modern and has all the features I need.

1.1 Why Gitolite?

The choices for a shared backend for a git server are numerous. Some of these choices
are:

• Github - famously at https://github.com. I disagree with their terms of service.

• Gitlab (Community Edition) - a contender found at https://gitlab.com/rluna-
gitlab/gitlab-ce. This solution is totally too large for my modest needs.

So I chose gitolite since it has these simple features:

• Can easily be installed on hardware that I control.

• Multiuser.

• Allows granular repository access control.

• Uses SSH keys. SSH keys are only usable for git access, not shell or login.

Home page: https://gitolite.com/gitolite/index.html

2 Remote Host System Configuration

Note: I will try and identify commands run on the workstations by using a root@client
and user@client command prompt. The server commands will have prompts of root@server

3

https://github.com
https://gitlab.com/rluna-gitlab/gitlab-ce
https://gitlab.com/rluna-gitlab/gitlab-ce
https://gitolite.com/gitolite/index.html

and user@server.

In some cases, there will be prompts with mv@git and root@git. These prompts are the
administrative user (mv), and the root user on the remote server. They are equivalent
to user@server and root@server, respectively.

Assuming you’ve just installed your favourite operating system, login on the console as
the root user to configure it.

Delete the default freebsd user:

root@think:~ # rmuser

Please enter one or more usernames: freebsd

Matching password entry:

freebsd:6...:5002:5002::0:0:FreeBSD:/home/freebsd:/bin/tcsh

Is this the entry you wish to remove? y

Remove user’s home directory (/home/freebsd)? y

Removing user (freebsd): mailspool home passwd.

You can run the bsdconfig command to setup various parts of the system, including
changing the root user’s password and setting network configuration.

2.1 Remote Host Admin User

We need a normal, unprivileged user for administering the remote server. Use your
operating system’s adduser command and create this user:

root@server:~ # adduser

Username: mv

Full name: Remote Admin

Uid (Leave empty for default):

Login group [mv]:

Login group is mv. Invite mv into other groups? []: wheel

Login class [default]:

Shell (sh csh tcsh) [sh]: tcsh

Home directory [/home/mv]:

Home directory permissions (Leave empty for default):

Use password-based authentication? [yes]:

Use an empty password? (yes/no) [no]:

Use a random password? (yes/no) [no]:

Enter password:

Enter password again:

Lock out the account after creation? [no]:

4

Username : mv

Password : *****

Full Name : Remote Admin

Uid : 5002

Class :

Groups : mvg wheel

Home : /home/mv

Home Mode :

Shell : /bin/tcsh

Locked : no

OK? (yes/no): yes

adduser: INFO: Successfully added (mvg) to the user database.

Add another user? (yes/no): no

Goodbye!

Note: in FreeBSD, it is important to add the user to the wheel group, as shown above.
This will allow the administrative user, mv in this case, to use the su - command to
become the root user. Other linux type systems use the sudo command when neces-
sary.

Also, you can choose a shell other than tcsh if you want. On FreeBSD, you’ll have
to install bash before you create this user if you want to use that shell (pkg install

bash).

2.2 SSH Server and System Startup

This system will listen for SSH connections on tcp port 22. You can change the port in
the /etc/ssh/sshd config file if you like, just be sure to update any ∼/.ssh/config
entries with the Port keyword.

At system setup, we will briefly allow password authentication to copy SSH public keys
for the administrative user (YOU) and the public key for the gitolite-admin reposi-
tory.

2.2.1 System Startup

We only need to start the Secure Shell (SSH) service. We also set static internet protocol
addresses as needed.

root@server:/ # cat /etc/rc.conf

Add to DNS and /etc/hosts

hostname="git.vinnythegeek.ca"

sshd_enable="YES"

5

IPv4

ifconfig_genet0="inet 10.24.7.22 netmask 255.255.255.0"

defaultrouter="10.24.7.1"

Add IPv6 config here as needed.

#ifconfig_jail60_ipv6="inet6 fdea:557c:9747:1060::2443 prefixlen 64"

#ipv6_defaultrouter="fdea:557c:9747:1060::6"

Keep tmp tidy by emptying on startup

clear_tmp_enable="YES"

do not open any network sockets for syslogd

syslogd_flags="-ss"

leave sendmail off

sendmail_enable="NONE"

do not start the DNS caching server

local_unbound_enable="NO"

Check that the sshd service starts correctly.

root@server:/ # service sshd start

Performing sanity check on sshd configuration.

Starting sshd.

Success!

2.3 SSH Key Pairs for the Git Client and Admin Users

Back on your workstation (i.e. the git client system) we’ll create a number of SSH
key pairs using ssh-keygen. Make sure to place a passphrase on these keys (you can
probably use the same passphrase if you like).

The key pairs we create will be:

1. A key pair for administering the system.

user@client:~ ssh-keygen -t ed25519 -f ~/.ssh/git_remote_admin_user \

-C "Administrative user for git remote server"

Generating public/private ed25519 key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/mv/.ssh/git_remote_admin_user

Your public key has been saved in /home/mv/.ssh/git_remote_admin_user.pub

Copy the key to the remote server using ssh-copy-id:

6

user@client:~ ssh-copy-id -i ~/.ssh/git_remote_admin_user mv@git.vinnythegeek.ca

Let’s check the remote server:

$ ssh mv@10.24.7.22

(mv@10.24.7.22) Password for mv@git.vinnythegeek.ca:

mv@git:~ % ls -la .ssh

total 12

drwx------ 2 mv mv 512 Jan 12 21:46 .

drwxr-xr-x 3 mv mv 512 Jan 12 21:46 ..

-rw------- 1 mv mv 123 Jan 12 21:46 authorized_keys

The ssh-copy-id command created the .ssh folder for us, with the correct per-
missions and placed the public key into the auhtorized keys file.

2. A key pair for accessing the gitolite-admin repository as the gitolite admin-
istrator.

user@client:~ ssh-keygen -t ed25519 -f ~/.ssh/gitolite_admin_user \

-C "Gitolite admin user"

Generating public/private ed25519 key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/mv/.ssh/gitolite_admin_user

Your public key has been saved in /home/mv/.ssh/gitolite_admin_user.pub

We do not use ssh-copy-id for this key, since it will be used in the gitolite

setup command that follows later in this document. For now we just copy it to
the admin user’s, mv in this example, home directory on the remote server.

user@client:~ scp ~/.ssh/gitolite_admin_user.pub mv@git.vinnythegeek.ca:

(mv@10.24.7.22) Password for mv@git.vinnythegeek.ca:

gitolite_admin_user.pub

Note: we append .pub to the key name so as to copy the actual public key portion.
ssh-copy-id, which we used for the first key takes care to do the right thing. Here
we must make sure we copy only the public key.

Check the copy results on the server:

mv@git:~ % ls -l

total 4

-rw-r--r-- 1 mv mv 101 Jan 12 21:54 gitolite_admin_user.pub

We’ll use that key in gitolite setup.

3. A key pair as a normal git user to access our git repositories for the usual git
push/pull activities. This key pair can be shared among the various workstations

7

that you use to do work on. These are the same workstations on which you want
your work synchronized.

user@client:~ ssh-keygen -t ed25519 -f ~/.ssh/git_remote_user_mv \

-C "User for git remote repositories"

Generating public/private ed25519 key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/mv/.ssh/git_remote_user_mv

Your public key has been saved in /home/mv/.ssh/git_remote_user_mv.pub

You need a separate key for at least the gitolite-admin repository, but the remote
server admin user and the ‘normal’ repository client user could probably use the same
keys.

I prefer to use separate keys for separate functions.

2.3.1 Client SSH Config Settings

To match our generated keys, we setup the following .ssh/config entries:

Host gitremote

User mv

AddKeysToAgent yes

HostName git.vinnythegeek.ca

AddressFamily inet

Port 22

IdentityFile ~/.ssh/git_remote_admin_user

Host git

User git

AddKeysToAgent yes

HostName git.vinnythegeek.ca

AddressFamily inet

Port 22

IdentityFile ~/.ssh/git_remote_user_mv

Host gitolite-vp

User git

HostName git.vinnythegeek.ca

Port 22

IdentityFile ~/.ssh/gitolite_admin_user

8

2.3.2 Test SSH Keys and Disable Passwords

Login to the remote server using your admin key to ensure it works:

user@client:~ $ ssh gitremote

Enter passphrase for key ’/home/mv/.ssh/git_remote_admin_user’:

Last login: Fri Jan 12 21:46:44 2024 from 192.168.60.59

mv@git:~ %

Using the .ssh/config file entry gitremote will ensure that the private key listed in
the IdentityFile statement is tried.

Once you can login with this key pair, become the root user:

mv@git:~ % su -

Password:

root@git:~ #

Now turn off password authentication in the SSH server by setting /checking these lines
in the /etc/ssh/sshd config file. I had to set KbdInteractiveAuthentication yes

to no. On FreeBSD, PasswordAuthentication is already set to no.

Change to yes to enable built-in password authentication.

Note that passwords may also be accepted via KbdInteractiveAuthentication.

#PasswordAuthentication no

#PermitEmptyPasswords no

Change to no to disable PAM authentication

KbdInteractiveAuthentication no

While still logged in, restart the SSH server:

root@git:~ # service sshd restart

Performing sanity check on sshd configuration.

Stopping sshd.

Waiting for PIDS: 1134.

Performing sanity check on sshd configuration.

Starting sshd.

Now we’ll try and login without using our gitremote entry.

user@client:~ $ ssh mv@10.24.7.22

mv@10.24.7.22: Permission denied (publickey).

As an aside, the key pair for gitremote was stored in my ssh-agent instance, since
I have AddKeysToAgent yes in the .ssh/config entries. In order to properly test
password authentication is disabled, we had to remove that key from the agent.

First list the keys, then delete the key by name:

user@client:~ $ ssh-add -l

9

2048 SHA256:rXkLvSxbedydWyHwWq6GENirka5aRQznd1p6LpcbqFU pollbox_admin_gitolite (RSA)

256 SHA256:QaJxdrjBX9h3EfK0wxWVunz3wNRE5NG66eZxldBITI4 Administrative user for git remote server (ED25519)

user@client:~ $ ssh-add -d .ssh/git_remote_admin_user

Identity removed: .ssh/git_remote_admin_user ED25519 (Administrative user for git remote server)

The next time we login with the gitremote config entry, the key will be added back to
the agent.

3 Gitolite / Git Installation

Login to the remote server using the admin account and key you just created, and become
the root user.

user@client:~ $ ssh gitremote

Enter passphrase for key ’/home/mv/.ssh/git_remote_admin_user’:

...

mv@git:~ %

mv@git:~ % su -

Password:

root@git:~ #

We install the git and gitolite packages using the freebsd pkg command.

Other operating systems have their own package management commands such as apt,
which are left as an exercise to the student.

3.1 Client Git

On all the systems that you wish to work on (i.e. your workstations), you’ll need to
install git. You don’t need to install gitolite on the workstations.

root@client:~ # pkg update

root@client:~ # pkg install git

New packages to be INSTALLED:

...

git: 2.39.1

...

Number of packages to be installed: 37

The process will require 238 MiB more space.

44 MiB to be downloaded.

10

Proceed with this action? [y/N]: y

...

===> Creating groups.

Creating group ’git_daemon’ with gid ’964’.

===> Creating users

Creating user ’git_daemon’ with uid ’964’.

[37/37] Extracting git-2.39.1: 100%

=====

...

Message from git-2.39.1:

--

If you installed the GITWEB option please follow these instructions:

In the directory /usr/local/share/examples/git/gitweb you can find all files to

make gitweb work as a public repository on the web.

All you have to do to make gitweb work is:

1) Please be sure you’re able to execute CGI scripts in

/usr/local/share/examples/git/gitweb.

2) Set the GITWEB_CONFIG variable in your webserver’s config to

/usr/local/etc/git/gitweb.conf. This variable is passed to gitweb.cgi.

3) Restart server.

If you installed the CONTRIB option please note that the scripts are

installed in /usr/local/share/git-core/contrib. Some of them require

other ports to be installed (perl, python, etc), which you may need to

install manually.

We switch over to the remote server to install gitolite and git.

3.2 Remote Host Server Gitolite and Git

We install gitolite on the system that we chose to be our remote (a.k.a. “cloud”)
server. In my case this server is in my home, but acts as a central point of storage
for my git repositories. You can use a third party hosting service for this server if you
like.

Installing gitolite pulls in git so all we need to do is install gitolite as follows:

root@git:~ # pkg install gitolite

Updating FreeBSD repository catalogue...

FreeBSD repository is up to date.

All repositories are up to date.

11

The following 37 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:

...

git: 2.42.0

gitolite: 3.6.12,1

...

Number of packages to be installed: 37

The process will require 239 MiB more space.

43 MiB to be downloaded.

Proceed with this action? [y/N]:y

...

[36/37] Installing git-2.42.0...

===> Creating groups.

Creating group ’git_daemon’ with gid ’964’.

===> Creating users

Creating user ’git_daemon’ with uid ’964’.

[36/37] Extracting git-2.42.0: 100%

[37/37] Installing gitolite-3.6.12,1...

[37/37] Extracting gitolite-3.6.12,1: 100%

...

=====

Message from git-2.42.0:

--

If you installed the GITWEB option please follow these instructions:

In the directory /usr/local/share/examples/git/gitweb you can find all files to

make gitweb work as a public repository on the web.

All you have to do to make gitweb work is:

1) Please be sure you’re able to execute CGI scripts in

/usr/local/share/examples/git/gitweb.

2) Set the GITWEB_CONFIG variable in your webserver’s config to

/usr/local/etc/git/gitweb.conf. This variable is passed to gitweb.cgi.

3) Restart server.

If you installed the CONTRIB option please note that the scripts are

installed in /usr/local/share/git-core/contrib. Some of them require

other ports to be installed (perl, python, etc), which you may need to

12

install manually.

=====

Message from gitolite-3.6.12,1:

--

Final gitolite setup instructions:

Any ssh user can be a gitolite provider. Simply run the following command as

the user:

/usr/local/bin/gitolite setup -pk /path/to/admin.ssh.key.pub

This will setup up the configuration files and repositories for gitolite.

The admin ssh key allows full access to the gitolite-admin repository where

additional users and repositories can be configured.

By default, the git user is created for use by gitolite.

A quick-install guide can be found in:

/usr/local/share/doc/gitolite/README.markdown

The post installation message reminds us of the next steps for setting up gitolite.
We’ll implement them in the sections that follow.

Optionally, capture the package list after installation:

root@server:~ # pkg info > pkg.list.for.git.20240113

To check the versions you have installed, you can run this command:

These are the packages installed by or with git and gitolite:

root@server:~ # pkg info | grep -i git

git-2.42.0 Distributed source code management tool

gitolite-3.6.12,1 Access control layer on top of git

4 Gitolite Server Configuration

The gitolite installation did not create the git user account, so we’ll do that.

4.1 Git User

root@git:~ # adduser

Username: git

13

Full name: git for gitolite

Uid (Leave empty for default):

Login group [git]:

Login group is git. Invite git into other groups? []:

Login class [default]:

Shell (sh csh tcsh git-shell nologin) [sh]:

Home directory [/home/git]:

Home directory permissions (Leave empty for default):

Use password-based authentication? [yes]: no

Lock out the account after creation? [no]:

Username : git

Password : <disabled>

Full Name : git for gitolite

Uid : 1002

Class :

Groups : git

Home : /home/git

Home Mode :

Shell : /bin/sh

Locked : no

OK? (yes/no): yes

adduser: INFO: Successfully added (git) to the user database.

Note: we used all the defaults, except for saying no to password-based authentica-
tion.

The details from the passwd file are:

root@git:~ # cat /etc/passwd | grep git

git_daemon:*:964:964:git daemon:/nonexistent:/usr/sbin/nologin

git:*:1002:1002:git for gitolite:/home/git:/bin/sh

The git daemon user is not used by gitolite. However, the git user will be and its
home directory will be the location of all repositories.

4.2 Gitolite Setup

According to the post-installation instructions we must run the gitolite setup com-
mand and specify a public key for the admin user. The public key we use is the one we
copied to the remote server administrator’s (mv) home directory:

mv@git:~ % whoami

mv

mv@git:~ % pwd

/home/mv

14

mv@git:~ % ls -la *.pub

-rw-r--r-- 1 mv mv 101 Jan 12 2024 gitolite_admin_user.pub

We become the git user (after becoming the root user via the mv user):

root@git:~ # su - git

git@git:~ $

git@git:~ $ pwd

/home/git

git@git:~ $ gitolite setup -pk /home/mv/gitolite_admin_user.pub

hint: Using ’master’ as the name for the initial branch. This default branch name

hint: is subject to change. To configure the initial branch name to use in all

hint: of your new repositories, which will suppress this warning, call:

hint:

hint: git config --global init.defaultBranch <name>

hint:

hint: Names commonly chosen instead of ’master’ are ’main’, ’trunk’ and

hint: ’development’. The just-created branch can be renamed via this command:

hint:

hint: git branch -m <name>

Initialized empty Git repository in /home/git/repositories/gitolite-admin.git/

hint: Using ’master’ as the name for the initial branch. This default branch name

hint: is subject to change. To configure the initial branch name to use in all

hint: of your new repositories, which will suppress this warning, call:

hint:

hint: git config --global init.defaultBranch <name>

hint:

hint: Names commonly chosen instead of ’master’ are ’main’, ’trunk’ and

hint: ’development’. The just-created branch can be renamed via this command:

hint:

hint: git branch -m <name>

Initialized empty Git repository in /home/git/repositories/testing.git/

WARNING: /home/git/.ssh missing; creating a new one

(this is normal on a brand new install)

WARNING: /home/git/.ssh/authorized_keys missing; creating a new one

(this is normal on a brand new install)

The files and directories created look like this:

git@git:~ $ ls -l

total 8

-rw------- 1 git git 12 Jan 12 21:07 projects.list

drwx------ 4 git git 512 Jan 12 21:07 repositories

git@git:~ $ ls -l repositories/

15

total 8

drwx------ 8 git git 512 Jan 12 21:07 gitolite-admin.git

drwx------ 7 git git 512 Jan 12 21:07 testing.git

git@git:~ $ ls -l .ssh/

total 4

-rw------- 1 git git 270 Jan 12 21:07 authorized_keys

The .ssh/ directory contains the authorized keys file, which is managed by the gitolite
software.

A gitolite perl script is run at every SSH login to the git server, when a configured key
is used. This script (/usr/local/libexec/gitolite/gitolite-shell) is listed in the
authorized keys file.

git@git:~ $ cat .ssh/authorized_keys

gitolite start

command="/usr/local/libexec/gitolite/gitolite-shell gitolite_admin_user",

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty

ssh-ed25519 AAA...luP8 Gitolite admin user

gitolite end

The script is presented with a username as the first parameter, which is the name
associated with the public key file. Access is granted or denied to the repositories
according to the this name and the contents of the gitolite.conf file, as we’ll see in
the next sections.

This is all the work that is required on the remote server for now. Most of the normal
administration of the repositories happens on the remote server administrator’s work-
station, once the gitolite-admin.git repository is cloned onto it.

4.3 Gitolite Admin Repository

Gitolite uses an authoritative remote git repository for storing other repository specifi-
cations and their users. On the git host, this repository is here:

git@git:~ $ cd repositories/

git@git:~/repositories $ ls -lad gitolite-admin.git/

drwx------ 8 git git 512 Jan 12 21:07 gitolite-admin.git/

We return to our workstation and work using the key pair created for the gitolite admin user.

Cloning a working copy is done as follows. We create a directory to store the gitolite-admin
repository, here it is called vp:

user@client:~ $ mkdir vp

user@client:~ $ cd vp

user@client:~/vp $

Now issue a clone command using our gitolite entry from our .ssh/config file:

$ git clone gitolite-vp:gitolite-admin.git

16

Cloning into ’gitolite-admin’...

Enter passphrase for key ’/home/mv/.ssh/gitolite_admin_user’:

remote: Enumerating objects: 6, done.

remote: Counting objects: 100% (6/6), done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 6 (delta 0), reused 0 (delta 0), pack-reused 0

Receiving objects: 100% (6/6), done.

[mv@think /usr/home/mv/vp]$ ls -la gitolite-admin/

total 11

drwxr-xr-x 5 mv mv 5 Jan 12 20:56 .

drwxr-xr-x 3 mv mv 3 Jan 12 20:55 ..

drwxr-xr-x 8 mv mv 13 Jan 12 20:56 .git

drwxr-xr-x 2 mv mv 3 Jan 12 20:56 conf

drwxr-xr-x 2 mv mv 3 Jan 12 20:56 keydir

4.4 File conf/gitolite.conf

The initial contents of this file are:

$ cat gitolite-admin/conf/gitolite.conf

repo gitolite-admin

RW+ = gitolite_admin_user

repo testing

RW+ = @all

We edit this file to add repo sections, for creating new repositories, with access control
symbols and usernames beneath them.

The usernames are specified by the public key used to interact with a repository.

4.5 Directory keydir/

The contents of the keydir/ directory are initially as follows:

$ ls -la gitolite-admin/keydir/

total 6

drwxr-xr-x 2 mv mv 3 Jan 12 20:56 .

drwxr-xr-x 5 mv mv 5 Jan 12 20:56 ..

-rw-r--r-- 1 mv mv 101 Jan 12 20:56 gitolite_admin_user.pub

We add public keys to this directory as we add users to the repositories.

17

4.6 Add a User and Their Repository

To add a user, copy their public key to the gitolite-admin/keydir/. We’ll use key
number 2 that we created in section 2.3. That key was git remote user mv.pub, and
we’ll copy it and rename it to just mv.pub. This means that the username used for access
control will be mv.

$ cp ~/.ssh/git_remote_user_mv.pub gitolite-admin/keydir/mv.pub

Now we edit the gitolite.conf file and add a repo entry with the results as so:

repo gitolite-admin

RW+ = gitolite_admin_user

repo gitstuff

RW+ = mv

R = @all

repo testing

RW+ = @all

We added the repository named gitstuff with two permission lines. One full control
for user mv and one read-only for all others.

4.7 Commit the New User and Repository

The gitolite software reinforces using git by requiring you to use a git workflow to
manage its configuration. This means we must use git status, git add, git commit

and git push to finish the new configuration.

$ git status

fatal: not a git repository (or any parent up to mount point /usr)

Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).

Whoops, we have to be in the gitolite-admin repository directory:

[mv@think /usr/home/mv/vp]$ cd gitolite-admin/

[mv@think /usr/home/mv/vp/gitolite-admin]$ git status

On branch master

Your branch is up to date with ’origin/master’.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: conf/gitolite.conf

Untracked files:

18

(use "git add <file>..." to include in what will be committed)

keydir/mv.pub

no changes added to commit (use "git add" and/or "git commit -a")

Let’s add the new key and the modified configuration file to staging for commit:

mv@think /usr/home/mv/vp/gitolite-admin]$ git add keydir/mv.pub conf/gitolite.conf

Now commit the staged files to the local copy of the repository:

[mv@think /usr/home/mv/vp/gitolite-admin]$ git commit -m "Add user mv \

and create the gitstuff repository."

[master 29cf12a] Add user mv and create the gitstuff repository.

2 files changed, 5 insertions(+)

create mode 100644 keydir/mv.pub

Now push the changes to the remote server, but first let’s look at the results of the git
remote -v command:

[mv@think /usr/home/mv/vp/gitolite-admin]$ git remote -v

origin gitolite-vp:gitolite-admin.git (fetch)

origin gitolite-vp:gitolite-admin.git (push)

The push:

[mv@think /usr/home/mv/vp/gitolite-admin]$ git push

Enter passphrase for key ’/home/mv/.ssh/gitolite_admin_user’:

Enumerating objects: 10, done.

Counting objects: 100% (10/10), done.

Delta compression using up to 8 threads

Compressing objects: 100% (5/5), done.

Writing objects: 100% (6/6), 631 bytes | 631.00 KiB/s, done.

Total 6 (delta 0), reused 0 (delta 0), pack-reused 0

remote: hint: Using ’master’ as the name for the initial branch. This default branch name

remote: hint: is subject to change. To configure the initial branch name to use in all

remote: hint: of your new repositories, which will suppress this warning, call:

remote: hint:

remote: hint: git config --global init.defaultBranch <name>

remote: hint:

remote: hint: Names commonly chosen instead of ’master’ are ’main’, ’trunk’ and

remote: hint: ’development’. The just-created branch can be renamed via this command:

remote: hint:

remote: hint: git branch -m <name>

remote: Initialized empty Git repository in /home/git/repositories/gitstuff.git/

To gitolite-vp:gitolite-admin.git

1ad91fc..29cf12a master -> master

Things to note:

1. We are using the gitolite admin user to send changes to the gitolite admin

repository.

19

2. We see an announcement about a newly created empty repository in

/home/git/repositories/gitstuff.git/.

If we look at the repositories/ directory on the remote server, we’ll see the new
gitstuff repository:

git@git:~ $ ls -la repositories/

total 20

drwx------ 5 git git 512 Jan 12 21:41 .

drwxr-xr-x 5 git git 512 Jan 12 21:41 ..

drwx------ 8 git git 512 Jan 12 21:41 gitolite-admin.git

drwx------ 7 git git 512 Jan 12 21:41 gitstuff.git

drwx------ 7 git git 512 Jan 12 21:41 testing.git

And if we look in the .ssh/authorized keys file, we’ll see an entry for user mv which
matches the public key we added.

git@git:~ $ cat .ssh/authorized_keys

gitolite start

command="/usr/local/libexec/gitolite/gitolite-shell gitolite_admin_user",no-port-forwarding,

no-X11-forwarding,no-agent-forwarding,no-pty ssh-ed25519 AAAA...luP8

Gitolite admin user

command="/usr/local/libexec/gitolite/gitolite-shell mv",no-port-forwarding,

no-X11-forwarding,no-agent-forwarding,no-pty ssh-ed25519 AAAAC3.../Ww

User for git remote repositories

gitolite end

4.8 Creating and Linking the User Repository

Our final task for user mv is to create their gitstuff repository, add some files, and link
it to our remote server. This is all done on the git user workstation.

[mv@think /usr/home/mv/vp]$ mkdir gitstuff

[mv@think /usr/home/mv/vp]$ cd gitstuff

[mv@think /usr/home/mv/vp/gitstuff]$ cp ~/.gitignore_global gitignore_global.txt

Initialize our local repository. Files can already exist in this folder. We can use it as a
working directory, too.

[mv@think /usr/home/mv/vp/gitstuff]$ git init

hint: Using ’master’ as the name for the initial branch. This default branch name

hint: is subject to change. To configure the initial branch name to use in all

hint: of your new repositories, which will suppress this warning, call:

hint:

hint: git config --global init.defaultBranch <name>

hint:

hint: Names commonly chosen instead of ’master’ are ’main’, ’trunk’ and

20

hint: ’development’. The just-created branch can be renamed via this command:

hint:

hint: git branch -m <name>

Initialized empty Git repository in /usr/home/mv/vp/gitstuff/.git/

See the status of our new repository. git status is a good command to memorize, as
it is useful all the time.

[mv@think /usr/home/mv/vp/gitstuff]$ git status

On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

gitignore_global.txt

nothing added to commit but untracked files present (use "git add" to track)

Add the file for staging and eventual commitment to the repository, and then check the
status again:

[mv@think /usr/home/mv/vp/gitstuff]$ git add gitignore_global.txt

[mv@think /usr/home/mv/vp/gitstuff]$ git status

On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: gitignore_global.txt

Now that we’ve added our initial file(s), we commit them to the repository. This is
basically our forever starting point.

[mv@think /usr/home/mv/vp/gitstuff]$ git commit -m "Add gitignore global file."

[master (root-commit) 11c88d0] Add gitignore global file.

1 file changed, 456 insertions(+)

create mode 100644 gitignore_global.txt

Now comes the whole point of using gitolite, linking the remote gitstuff repository
we created with gitolite to this new, local repository.

Set it using the git remote add command, taking care to use the git .ssh/config en-
try for our ‘normal’ user, neither the gitremote entry, nor the gitolite-vp entry.

[mv@think /usr/home/mv/vp/gitstuff]$ git remote add origin git:gitstuff.git

[mv@think /usr/home/mv/vp/gitstuff]$

21

See if we can use it now to git push our committed changes to the empty remote.

[mv@think /usr/home/mv/vp/gitstuff]$ git push

fatal: The current branch master has no upstream branch.

To push the current branch and set the remote as upstream, use

git push --set-upstream origin master

To have this happen automatically for branches without a tracking

upstream, see ’push.autoSetupRemote’ in ’git help config’.

We missed a step with our remote and branch linkage. Follow the instructions. We only
have to use the --set-upstream option one time.

[mv@think /usr/home/mv/vp/gitstuff]$ git push --set-upstream origin master

Enter passphrase for key ’/home/mv/.ssh/git_remote_user_mv’:

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 8 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 2.46 KiB | 2.46 MiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

To git:gitstuff.git

* [new branch] master -> master

branch ’master’ set up to track ’origin/master’.

Done!

We can now clone add other users’ public keys via the gitolite-admin mechanism and
they’ll be able to clone and use the gitstuff repository.

I can also copy the private key associated with the mv.pub key to another system (along
with the corresponding .ssh/config entry for host git), and clone and work with the
repository, from that system without having to create a separate user.

4.9 Summary: Add Other Users and Repositories

Using the gitolite-admin repository:

1. User generates ssh key pair.

2. User sends public key to admin user.

3. Admin adds public key to gitolite-admin keydir/ directory.

4. Admin adds repository to conf/gitolite.conf file and sets user’s access levels
based on their key name.

22

5. Admin uses git add, commit and then git push to make the changes.

6. User follows the steps in section 4.8

5 Git Configuration Files

There are three locations for configuration files that affect most users. They are:

1. System - these are operating system wide settings. I’ve never needed to adjust
these. They can be viewed with the following command:

[mv@think /usr/home/mv/1mvgdocs/bsd]$ git config --system -l

fatal: unable to read config file ’/usr/local/etc/gitconfig’:

No such file or directory

As you can see, there are no system level settings.

2. Global - these are user level settings that are stored in the user’s home directory.
There are at least two setting options that you’ll set within this configuration level.
Your name and email.

[mv@think /usr/home/mv/1mvgdocs/bsd]$ git config --global -l

user.name=Call me Vinny

user.email=git@vinnythegeek.ca

core.autocrlf=input

core.excludesfile=/home/mv/.gitignore_global

Other global settings that could be useful are command aliases.

3. Local - these are repository level settings that are stored within a .git folder in
the config file (i.e. .git/config). The usual settings at this level are “remotes”.

[mv@think /usr/home/mv/1mvgdocs/bsd]$ git config --local -l

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true

core.sharedrepository=0640

receive.denynonfastforwards=true

remote.origin.url=sccs:bsd.git

remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*

branch.master.remote=origin

branch.master.merge=refs/heads/master

pull.rebase=false

If you need to see where a configuration setting is coming from, you can use the git

config --list --show-origin command:

23

[mv@think /usr/home/mv/1mvgdocs/bsd]$ git config --list --show-origin

file:/home/mv/.gitconfig user.name=Call me Vinny

file:/home/mv/.gitconfig user.email=git@vinnythegeek.ca

file:/home/mv/.gitconfig core.autocrlf=input

file:/home/mv/.gitconfig core.excludesfile=/home/mv/.gitignore_global

file:.git/config core.repositoryformatversion=0

file:.git/config core.filemode=true

file:.git/config core.bare=false

file:.git/config core.logallrefupdates=true

file:.git/config core.sharedrepository=0640

file:.git/config receive.denynonfastforwards=true

file:.git/config remote.origin.url=sccs:bsd.git

file:.git/config remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*

file:.git/config branch.master.remote=origin

file:.git/config branch.master.merge=refs/heads/master

file:.git/config pull.rebase=false

6 Git Working System Configuration

The workstation used to develop software and documentation needs to be setup. The
first settings are your global git user name and email setting.

user@client:~ % git config --global user.name "Mark G."

user@client:~ % git config --global user.email git@vinnythegeek.ca

6.1 File Line Endings

The next config. item helps deal with line endings with Microsoft development systems.
On an Unix-like system, setting the core.autocrlf to input is sensible.

user@client:~ % git config --global core.autocrlf input

6.2 Ignoring Files

There are a lot of files that you never want to store in a repository. Files that are au-
tomatically generated, files that contain sensitive information, useless operating system
created files, and so on.

Change to your home directory, then create a .gitignore global file. We’ll fill it
with many entries from the internet. We also need to set the core.excludesfile

setting.

user@client:~ % touch .gitignore_global

user@client:~ % git config --global core.excludesfile ~/.gitignore_global

24

Good templates for ignore files can be found at Github. The specific link for LATEX type
files was at:

https://raw.githubusercontent.com/github/gitignore/master/TeX.gitignore

The contents of that file were added to the .gitignore global file. Plus many more
from:

https://raw.githubusercontent.com/github/gitignore/master/Global/macOS.gitignore

along with Python and Django related items:

https://raw.githubusercontent.com/github/gitignore/master/Python.gitignore

We also add:

envdir/

Eclipse / IDE items

.project

.pydevproject

Since the sensitive django settings will be stored in environment variables defined in the
above listed directory.

A copy of my .gitignore global file can be found at TXT: .gitignore global file Since
it is named gitignore global.txt, use your browser’s “Save Page As” command to
rename it to .gitignore global and save it in your home directory.

6.3 git status

Find out what is happening in your repository with the git status command. It’ll
tell you about untracked files, modified files and files that are staged and ready for
committing.

6.4 git log

Use this command to look at commit history.

[mv@think /usr/home/mv/vp/gitstuff]$ git log

ESC[33mcommit 11c88d013a3bacc34fe9a7ffe948f51283d606acESC[mESC[33m

(ESC[mESC[1;36mHEADESC[mESC[33m -> ESC[mESC[1;32mmasterESC[mESC[33m,

ESC[mESC[1;31morigin/masterESC[m

ESC[33m)ESC[m

Author: Call me Vinny <git@vinnythegeek.ca>

Date: Fri Jan 12 22:40:14 2024 -0800

Add gitignore global file.

25

 https://github.com/github/gitignore
https://www.palaceofretention.ca/vp/gitignore_global.txt

Looking closely at the output, we see a bunch of ESC sequences. This usually means
colour is trying to be output. If the terminal doesn’t support colour, or you prefer not
to use it, set the color.ui config variable to false:

[mv@think /usr/home/mv/vp/gitstuff]$ git config --global color.ui false

The ESC sequences are now gone.

[mv@think /usr/home/mv/vp/gitstuff]$ git log

commit 11c88d013a3bacc34fe9a7ffe948f51283d606ac (HEAD -> master, origin/master)

Author: Call me Vinny <git@vinnythegeek.ca>

Date: Fri Jan 12 22:40:14 2024 -0800

Add gitignore global file.

6.5 Changing Remote

I had a repository that I used for a software engineering course. Its remote was:

mv@think:~/uvic/seng265/mvg$ git remote -v

origin ssh://mvg@git.seng.uvic.ca/seng/git/seng265/mvg (fetch)

origin ssh://mvg@git.seng.uvic.ca/seng/git/seng265/mvg (push)

A remote can be updated as follows:

mv@think:~/uvic/seng265/mvg$ git remote set-url origin git:seng265.git

mv@think:~/uvic/seng265/mvg$ git remote -v

origin git:seng265.git (fetch)

origin git:seng265.git (push)

We can set the name and email of the user at the local config level of the repository to
override the global settings:

user@client:~/vp/gitstuff % git config --local user.name "Mark G."

user@client:~/vp/gitstuff % git config --local user.email mvg@example.com

26

7 Appendix: DNS Name for Service

We will create git.vinnythegeek.ca as the hostname for internal use only (at his
time).

First, freeze the dynamic zone for vinnythegeek.ca:

root@dnsprimary:/usr/local/etc/namedb/dynamic # rndc freeze vinnythegeek.ca in xfer

Then edit the zone file, remembering to update the serial number.

root@dnsprimary:/usr/local/etc/namedb/dynamic # vi vinnythegeek.ca.ext.db

Serial number updated...

...

git IN A 10.24.7.22

IN AAAA fdea:557c:9747:1060::2443

...

Thaw the zone on the primary DNS server, which will cause a reload of the zone.

root@dnsprimary:/usr/local/etc/namedb/dynamic # rndc thaw vinnythegeek.ca in xfer

Through the magic of zone transfers, the changes are propagated to the secondary /
authoritative servers.

27

	Introduction
	Why Gitolite?

	Remote Host System Configuration
	Remote Host Admin User
	SSH Server and System Startup
	System Startup

	SSH Key Pairs for the Git Client and Admin Users
	Client SSH Config Settings
	Test SSH Keys and Disable Passwords

	Gitolite / Git Installation
	Client Git
	Remote Host Server Gitolite and Git

	Gitolite Server Configuration
	Git User
	Gitolite Setup
	Gitolite Admin Repository
	File conf/gitolite.conf
	Directory keydir/
	Add a User and Their Repository
	Commit the New User and Repository
	Creating and Linking the User Repository
	Summary: Add Other Users and Repositories

	Git Configuration Files
	Git Working System Configuration
	File Line Endings
	Ignoring Files
	git status
	git log
	Changing Remote

	Appendix: DNS Name for Service

