

Concept

Thumb drive, contains music, playlists, program
↓

Raspberry Pi, with desktop icon starting the
program

↓
Pi HDMI output to home stereo amplifier

Python program

 Nested loop structure

 Outer loop – select playlist, randomize etc.

 Inner loop – play music and monitor keyboard
 for pause, skip etc.

Python program

Outer loop structure
 Initialization
 Imports various modules
 Variables used section – a commented list
 Functions
 Identify host, set appropriate working directory
 Music locations – a commented list
 Playlist locations – a commented list

IDENTIFY HOST AND SET WORKING DIRECTORY
LOCATION APPROPRIATELY

myHost = gethostname()
print(f"Found host called {(myHost)}")

if myHost == "Idra": # LaCie now persistant as M:
 os.chdir("M:/")
elif myHost == "raspberrypi":
 os.chdir("/media/pi/MUSICPLAYER/")
else:
 print("No known host found, program ending.")
 sys.exit()

Begin outer loop
while True:

GET THE NAMES OF THE PLAYLISTS IN THE MUSIC DIRECTORY

 playLists = glob.glob("MusicCategories" + "/*") # returns a list 'playLists' of
files in the format MusicCategories\\ZZZ5.txt

 print(f"Number of Playlists found = {len(playLists)}.") # check how many
playlists found, this can be commented out later

 print()

SECTION TO DISPLAY PLAYLIST NAMES AND PICK ONE TO PLAY
 chosenPlayListName = playListPick(playLists)

 playListName = [0] * len(playLists) # make a list as long as the number of playlists

 place = 0
 while place < len(playLists):
 playListName[place] = os.path.basename(playLists[place])
 # Remove directory path to clean up playlist names, using'os' to strip off directory headers
 print(f"Playlist name {place} is {(playListName[place])} ")
 place += 1
 print()

 chosenPlayListNumber = int(input("What is the number of the playlist you want to hear? "))
 chosenPlayListName = playLists[chosenPlayListNumber]
 print()
 print(f"ChosenPlayListName is {playListName[chosenPlayListNumber]}")

 return chosenPlayListName
pass

Picking a playlist screen

CONVERT CHOSEN PLAYLIST FROM A TEXT FILE TO A LIST OBJECT, STRIPPED OF LINE FEEDS

 songList = makeSongList(chosenPlayListName)

 songListTemp = []
 with open(f"{chosenPlayListName}", "r") as f:
 songListTemp = f.readlines()
This list object includes a line feed at the end of each line which causes a failure to open the music file

 songList = []
 for item in songListTemp:
 item = item.replace("\n", "")
 songList.append(item)
This list object is stripped of the line feed

 totalSongs = len(songList)
 print(f"There are {totalSongs} tunes in this playlist")
 print()
 return songList
pass

Why Python doesn’t like Dvořák

Display first few songs
def displayFirstFewSongs(songList):

 totalSongs = len(songList)

 x = min(5,totalSongs)

 print(f"The first {x} songs are;")

 count = 0

 while count < x:

 songName=os.path.basename(songList[count])

 print(songName)

 count = count+1

 print()

pass

Make a play order list
def randomizer(songList):

 totalSongs = len(songList)
 playOrderList = list(range(0, totalSongs)) # range start number to stop number, stop number is not included in the list
 randFlag = False
 randSelect = input("Do you want to shuffle the songs? Y or N ")
 if randSelect == "Y" or randSelect == "y":
 randFlag = True
 print()
 print("Music will play in random order")
 print()
 else:
 print()
 print("Music will not be randomized")
 print()
 if randFlag == True:
 random.shuffle(playOrderList)

 return playOrderList

Show first songs and make play order list

Outer loop completed

● List of locations of the songs to play
● List of the order to play the songs

Inner loop
● Must run two tasks simultaneously

● Play music in chosen order

 - stop when all music played
● Monitor for keyboard input

 - make appropriate response to input

Inner loop 1 – increment song
 while True:
 if pygame.mixer.music.get_busy() == False: # Music not playing
 if songNext == len(songList): # No more songs in list
 reasonForBreak = "AllSongsPlayed"
 break
 else: # Play the next song and increment the counter
 playNext = playOrderList[songNext]
 nextSong = os.path.basename(songList[playNext])
 print(f"Next song is {nextSong}")
 print(f"s = skip, q = quit, p = pause, n = new playlist")
 print()
 pygame.mixer.music.load(songList[playNext])
 pygame.mixer.music.play()
 songNext += 1

Inner loop 2 – keyboard monitor
 while True:
 if pygame.mixer.music.get_busy() == False: # Music not playing
 |
 | some code
 |
 else: # Music is playing
 time.sleep(0.1)

 if keyboard.is_pressed("n"): # Change to another Playlist
 pygame.mixer.music.stop()
 reasonForBreak = "PickAnotherPlaylist"
 break

 if keyboard.is_pressed("q"): # Quit
 pygame.mixer.music.stop()
 reasonForBreak = "Quit"
 break

Inner Loop – skip a track
 else: # Music is playing
 time.sleep(0.1)

 if keyboard.is_pressed("s"): # Skip to next track
 print("Skipping this song")
 print()
 pygame.mixer.music.stop()
 if songNext == len(songList): # No more songs in list
 print(f"That was the final song")
 reasonForBreak = "NoMoreSongs"
 break
 playNext = playOrderList[songNext]
 nextSong = os.path.basename(songList[playNext])
 time.sleep(1.0)
 print(f"Next song is {nextSong}")
 print(f"s = skip, q = quit, p = pause, n = new playlist")
 print()
 pygame.mixer.music.load(songList[playNext])
 pygame.mixer.music.play()
 songNext += 1

Inner loop has exited on “break”
 if reasonForBreak == "Quit":

 print("Stopping on keypress 'q'")

 time.sleep(0.1)

 print("Program terminated")

 break

 if reasonForBreak == "PickAnotherPlaylist":

 print("Setting up to choose another playlist")

 #tcflush(sys.stdin, TCIFLUSH) # clean out anything in the input queue - not available for windows

 time.sleep(2.0)

 pass

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

