
CircuitPython and Mu Talk

CircuitPython

What is CircuitPython? Where did it come from?

CircuitPython is a port of MicroPython
MicroPython created in 2013 to run on micros with limited resources (RAM, storage,

clock speed, etc)
Scott Shawcroft of Adafruit started CircuitPython in 2016 to port MicroPython to

SAMD21
Based on Python 3.4 and beyond
Needs minimum 48MHz and above, 32K RAM (64K recommended), 256KB onboard

flash memory
Blinka wrapper library to allow CircuitPython to run on SBC’s such as Raspberry Pi’s

and BeagleBones
CircuitPython developer prioritizes boards that have built in USB – SAMDx.5, ESP32-

2

How did I find CircuitPython?

I discovered CircuitPython when I ordered an AdaBox subscription and the first one
included a CircuitPlayground Express with CircuitPython pre-loaded – FUN!

Why Python for Microcontrollers?

Python is way easier to develop with than C or assembly
Has garbage collection and no pointers
Has built in exceptions
Has tons of libraries and examples for all sorts of sensors and devices
Supports wireless and wired ethernet for boards that have those
USB built in and just works

What can it do?

Libraries – supports tons of sensors,
displays, and actuators

Examples – provides sample code for
most if not all devices

Supports USB out of the box –
Adafruit dropped support for the 8266
because of lack of on-chip USB support

Documentation – CircuitPython.org, Adafruit.com,

Where can I get it?

CircuitPython is available at www.circuitpython.org

Run through download bootloader
first, head over to circuitpython.org/downloads – Python support for your board
find the board that you want to use and download the uf2 bootloader file – over 240

board supported!
install bootloader:

double-tap reset button, CIRCUITPY drive changes to a drive specific to your
board

in my case, RPI-RP2
click on the downloaded .uf2 file and drag it to the USB drive
board will reboot itself, and you’ll be back to having a CIRCUITPY drive

Download libraries – Python support for your sensors, displays, etc
Download the library bundle that corresponds to the version of CircuitPython .uf2 file

you installed and extract them somewhere
Copy over libraries you’ll need to CIRCUITPYTHON/lib/
Also might be handy to copy over example files as space on your device permits

Different Versions – 6.x vs 7.x are both

SBCs

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Mu

“A simple Python editor for beginner programmers”

Mu is the preferred IDE according to the folks at CircuitPython

Easy to learn, easy to use, very simple

Available for just about any OS (not sure about FreeBSD...)

Windows, MacOS, CentOS, Fedora, Rasperry Pi OS, Snap Store for Ubuntu, etc

Can be installed as a Python package via PIP

Raspberry Pi OS comes with Mu “Out of the Box”

Mu can be used for Python (uses JupyterHub), CircuitPython, MicroPython and even
has a view for the Flask framework

Download from codewith.mu/en/download
After Mu starts, select Mode:

CircuitPython and Mu Together

Microcontroller appears as a small USB hard drive

make a Python program and save it to micro

Mu Control

New – start a new file

Load – Load a file already saved on your micro into the Mu editor

Save – Save a file from the Mu editor onto your micro

Serial – Open the REPL terminal (Read, Evaluate, Print, Loop)

Plotter – plots tuples onto a graph – scales automatically

Zoom in/out – fonts bigger or smaller

Theme – Light, Dark, or High Contrast

Check – check for syntax, also seems to check for best practices for formatting
(spacing, etc)

Help – super simple tutorial

Note that the title bar will look slightly different depending on version and if you use one of
the other modes. Example, Python 3 mode has a debugging button that doesn’t apply to
micros.

Let’s look at some code:

diff CircuitPython & Arduino

Arduino Code for
Distance Sensor HC-0SR04

void setup() {
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 Serial.begin(9600);
}

void loop() {
 float duration, distance;
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);
 distance = (duration / 2) * 0.0344;

 Serial.print(distance);
 Serial.print(" cm \n");
 delay(500);

}

CircuitPython Code for
Distance Sensor HC-0SR04

import time
import board
import adafruit_hcsr04

sonar = adafruit_hcsr04.HCSR04(trigger_pin=board.D0, echo_pin=board.D1)

while True:
 print((sonar.distance,))
 time.sleep(0.1)

"""
Demonstrate a blinking LED on an ItsyBitsy M4 board
"""
import board
import displayio
import terminalio
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(.5)
 led.value = False
 time.sleep(.5)
 pass

Shout out to Adafruit and Lady Ada

	CircuitPython and Mu Talk
	CircuitPython
	What is CircuitPython? Where did it come from?
	How did I find CircuitPython?
	Why Python for Microcontrollers?
	What can it do?
	Where can I get it?

	Mu
	CircuitPython and Mu Together

