
Flashy Lights and Security

Design the Network with Security in Mind

 Separate Networks, keeping the bad guys out, and the IoT network honest
 Set up Firewall rules (on the router) to enforce the following:

o The DMZ network can be accessed from the internet
o The IoT Network can ONLY connect to the server in the DMZ network!
o The Trusted People Network can go anywhere
o The Guest Network, you have friends, right?

 Don't forget IPv6 and firewall rules

HTTP vs HTTPS

 HTTP all data is transferred in plain text
 HTTPS all data is encrypted using public private key (PPK) encryption

 For our application - changing flashing lights there is no need to encrypt the data.
o http://leds/program?s=6 is astonishingly uninteresting but what is interesting

is
o the user id and password. These we want to keep secret. Both in this case

and - wouldn't want the NSA messing with our lights :(
o More importantly we wouldn't want the black hat hackers messing with our

o pacemakers, defibrillators,
ponds and predator drones

So we want to ensure that only authorized folks can get in. Ways to do this:

1. ID, Password
2. PPK and passphrase where only authorized folks hold the private key and

passphrase.
3. One time pad
4. ...

https://thenextweb.com/insider/2016/03/31/5-technologies-will-flip-world-authentication-head/

Node-Red on the Pi

 Installation of node red
o Look at http://drsol.com/~deid/pi/leds2/Node-RED/index.html#InstallNode-RED for

instructions on installing Node-RED on the Pi.

Connecting to the Node-RED server on your Pi:

 https://<ip address or hostname>:1880

 Description of flows

http://drsol.com/~deid/pi/Node-RED/index.html#InstallNode-RED
https://www.instantssl.com/ssl-certificate-products/https.html

 https://10.10.45.???
o or

 https://[fd11::45]

Choose Colour

var lightProgram = global.get('lightp') || 0;

if (lightProgram == 0){
 msg.background = global.get('onColour');
}else{
 msg.background = global.get('offColour');
}
return msg;

http request

http://pl9823:neopixelnot@leds/program?s=2

 Creating a Secure Certificate with Let'sEncrypt and certbot

o Follow tutorial to install 'certbot" for LetsEncrypt on the Pi
 Do not need to compile binaris, as Pi 3 is an ARM7 system

Added keys for debian jessie-backports

> sudo apt-key adv --keyserver

keyserver.ubuntu.com --recv-keys

8B48AD6246925553

> sudo apt-key adv --keyserver

keyserver.ubuntu.com --recv-keys

7638D0442B90D010

 Then do

apt-get install certbot

o Run Certbot on the Pi
 Note: Pi must be running a webserver, and it must be accessible to the

outside world (adjust our firewall as needed)

 sudo certbot certonly --webroot -w

/var/www/html --email admin@domain.net

--rsa-key-size 4096 -d

myhost.domain.net

Saving debug log to

/var/log/letsencrypt/letsencrypt.log

Obtaining a new certificate

Performing the following challenges:

http-01 challenge for

6rasport.cvmiller.net

Using the webroot path /var/www/html

for all unmatched domains.

Waiting for verification...

Cleaning up challenges

Generating key (4096 bits):

/etc/letsencrypt/keys/0000_key-

certbot.pem

Creating CSR:

/etc/letsencrypt/csr/0000_csr-

https://blog.milne.it/2017/03/20/certbot-lets-encrypt-installing-on-raspbian-jessie/

certbot.pem

Cert is stored in

/etc/letsencrypt/live/myhost.domain.net

/
o then copy the private and fullchain certs (pem files) to /home/pi/.node-red

directory

 sudo cp

/etc/letsencrypt/live/6rasport.cvmiller

.net/privkey.pem /home/pi/.node-

red/privatekey.pem

sudo cp

/etc/letsencrypt/live/6rasport.cvmiller

.net/fullchain.pem /home/pi/.node-

red/certificate.pem
o Edit node-red settings.js file

 Uncomment and add the names of the certificate file you created a
while ago.

 // Add Certs
131 https: {

132 key:

fs.readFileSync('/home/pi/.node-

red/privatekey.pem'),

133 cert:

fs.readFileSync('/home/pi/.node-

red/certificate.pem')

134 },

o Restart node-red
o

 Creating and installing a home brewed secure certificate
o cd to your home directory then cd to .node-red and execute the following

commands to create a self signed certificate
 openssl genrsa -out privatekey.pem 1024
 openssl req -new -key privatekey.pem -out private-csr.pem
 openssl x509 -req -days 3650 -in private-csr.pem -signkey

privatekey.pem -out certificate.pem
o Modify the node-red config file settings.js

o Uncomment the line: var fs = require("fs");

o Uncomment the lines and add credentials (see below):
 // Deid uncommented

107 adminAuth: {

108 type: "credentials",

109 users: [{

110 username: "deid",

111 password:

"$2a$08$etA.ES98hxaVl9zYQN8xX.uAlQT/rRuARzdokGr7SmuGC

og77jYPm",

112 permissions: "*"

113 }]

114 },

o Uncomment and add credentials:
 // Deid modified uncommented and insert creds.

20190909
121 httpNodeAuth:

{user:"deid",pass:"$2a$08$etA.ES98hxaVl9zYQN8xX.uAlQT

/rRuARzdokGr7SmuGCog77jYPm"},

122 httpStaticAuth:

{user:"deid",pass:"$2a$08$etA.ES98hxaVl9zYQN8xX.uAlQT

/rRuARzdokGr7SmuGCog77jYPm"},

o Uncomment and add the names of the certificate file you created a while ago.
 // Deid uncommented.

131 https: {

132 key: fs.readFileSync('/home/pi/.node-

red/privatekey.pem'),

133 cert: fs.readFileSync('/home/pi/.node-

red/certificate.pem')

134 },

 Creating Credentials
o The credentials are a bcrypt hash. To generate a suitable password hash, you

can use the node-red-admin command-line tool:
 node-red-admin hash-pw

 It will query for the password and return the bcrypt hash.

Wireshark

Looking at the data transmission

 https

https://en.wikipedia.org/wiki/Bcrypt
https://nodered.org/docs/node-red-admin

 From /etc/services:

 vsat-control 1880/tcp # Gilat VSAT Control
 vsat-control 1880/udp # Gilat VSAT Control

 We are NOT doing using port 1880 for vsat control. It turns out that 1880 is also the default port for Node-

red.

Whats interesting here, is that nothing is interesting.

IPV6

 Although IPv6 may seem scary, it isn't. One may assume that it is Just Like IPv4,
but it isn't. IPv6 is a different protocol that still uses TCP and UDP for transport. IPv6
has its own firewall rules, and routing protocols. That said, one can learn the basics
of IPv6 very quickly if they understand how networks work (with IPv4).

Why use IPv6?

 Because it is easier. There is no NAT (Net Address Translations) in the way, and
correspondingly, no port forwards to set up. Your application is simpler. IPv6
eliminates the evils of NAT

o Broken connectivity - The many to one nature of NAT breaks any to any
connectivity originally conceived by the founders of the internet

o Simplifies Communications - Other traversal protocols like STUN
(Session Traversal Utilities for NAT), TURN (Traversal Using Relays around
NAT), IGDP (UPnP Internet Gateway Device Protocol), and ALGs
(Application-level gateway) are no longer needed

o Easier Troubleshooting - Since the client address is the real address, and
one doesn't have to look through one or more NAT devices to see the
mapping of addresses just to troubleshoot a path

 Because you will be future-ready. The world has run out of IPv4 addresses (a
couple of years ago), but the internet continues to grow. It can only grow using a
larger address space.

 It is already deployed on every PC, Mac, and smart phone. In fact, there are
wireless providers such as T-Mobile who are running IPv6-only networks with over
20 million users on their network. According to Google Stats, over 20% of internet
traffic today is over IPv6.

Using host names rather than IP addresses

 Utilizing IPv6 should be transparent to the user. Rather than using a literal IPv4
address, such as 10.10.45.10, or an IPv6 address such as FD11::45, a better
practice is to use a host name. Host names utilize the abstraction layer of DNS. If
you don't have control of DNS, then put the host name into /etc/hosts

o mypi fd11::45

 Once a host name has been setup, then the name can be used in the brower URL
like any other website:

o https://mypi:1880/

 Using a host name, also gets around the difficult issue of colons. In the IPv4 world,
colons usually represent a specific TCP (or UDP) port, e.g.

o 10.10.45.10:1880

 But IPv6 uses colons to demark the Quibbles of the IPv6 address. So a rather cludgy
way was invented to indicate the port number with an ipv6 address:

o [fd11::45]:1880

 As you can see it is much easier to use host names:
o mypi:1880

https://www.google.com/intl/en/ipv6/statistics.html
https://ipv6-net.blogspot.com/2015/12/quibbling-in-ipv6.html

 When sniffing an IPv6 transaction using wireshark, it is often easy to use the
following capture filter which will filter out all that IPv4 cruft:

o ip6

 As you can see, the capture looks very similar to the IPv4 wireshark capture earlier,
but with IPv6 addresses.

 Whats interesting here, is that nothing is interesting. IPv6 should be transparent to
the user.

Node-RED and IPV6

 Modification to ../.node-red/settings.js to listen on IPV6.

 26 // By default, the Node-RED UI accepts connections on all
IPv4 interfaces.

 27 // Deid added IPv6 stuff.

 28 // To listen on all IPv6 addresses, set uiHost to "::",

 29 // The following property can be used to listen on a

specific interface. For

 30 // example, the following would only allow connections

from the local machine.

 31 //uiHost: "127.0.0.1",

 32 uiHost: "::",

Notes:

 Certificates are by domain-name only
o By hijacking DNS, we use local addresses, rather than the real (internet)

addresses
 Certbot Requires Internet connectivity

o It creates Challenges, and places them in the Document-Root of the
webserver in order to prove to LetsEncrypt that the Cert is being generated for
the correct domain-name

