PL9823 Web Controlled LEDs

Introduction

We thought we would start with something a bit whimsical.

Since we are early in the academic year

- With pole
- With another pole
- With LEDs
This all started when my wife decided that we should do something with the 60 or so telephone insulators she has been collected for the past 30+ years. Perhaps put a led in them and stick them in the garden she suggested.

So ... I went looking on Ali Express for cheap LEDs. Thinking a bunch of different coloured LEDs would be fun. And I found:
Not only are the LEDs any colour I want, they can be any of 16 million or so colours. And they are individually
addressable. Each led in the circuit can be a different colour and the colours can change.

- So I bought 100 of them!
- Then over the next several days - with much reading of web pages and tutorials and libraries - I managed to get them to work.

Thanks to:

- http://fastled.io/
- The guy with the Swiss accent: https://www.youtube.com/watch?v=YJQG9JnDemM&t=7s
- https://hackaday.com/2017/01/20/cheating-at-5v-ws2812-control-to-use-a-3-3v-data-line/

And I built the following. The real thing is wandering about here somewhere with a battery attached to it.
The NodeMCU ESP8266 micro-controller runs the show
The push button cycles through the various led programs that I wrote.

The LEDs, of course, light up.

And the prototype board holds it all together and provides electrical connections.

I then spent the next month off and on writing led "programs" so that pushing the button does something.

I currently have 8 programs that flash the lights in various ways,

obviously, there are an infinite number of possibilities.

If you changed the layout of the LEDs to say - a grid - you could show pictures ...

It then occurred to me that use a web page could web control the selection of light program.

Thanks to the ESP8266s built in wifi and web server.

So I did
The code was written in the Arduino IDE and compiled and uploaded to the ESP8266 with the Arduino IDE.

- The IDE is running on a Raspberry Pi.
- Click here for information on Installing the Arduino IDE on the Raspberry Pi

And there is a problem. We put a password on the request to get the web page to change the lights but look:

Anyone with network packet analyzer like wireshark can see the ID and Password!
Filter: p.addr == 192.168.0.37

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>13062</td>
<td>1490467935</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>54 51030 > http [ACK] Seq=1 Ack=1 Win=14600 Len=0</td>
<td></td>
</tr>
<tr>
<td>13066</td>
<td>1490468262</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>374 GET / HTTP/1.1</td>
<td></td>
</tr>
<tr>
<td>13064</td>
<td>1490468337</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>HTTP</td>
<td>226 HTTP/1.1 401 Unauthorized</td>
<td></td>
</tr>
<tr>
<td>13065</td>
<td>1490468327</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>54 51030 > http [ACK] Seq=321 Ack=173 Win=15544 Len=0</td>
<td></td>
</tr>
<tr>
<td>13066</td>
<td>1490468142</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>54 51030 > http [FIN, ACK] Seq=321 Ack=173 Win=15544 Len=0</td>
<td></td>
</tr>
<tr>
<td>13067</td>
<td>1490468520</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>171 [TCP segment of a reassembled PDU]</td>
<td></td>
</tr>
<tr>
<td>13068</td>
<td>1490468173</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>54 51030 > http [RST] Seq=321 Win=8 Len=0</td>
<td></td>
</tr>
<tr>
<td>13069</td>
<td>1490468328</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>80 http 51030 [RST, ACK] Seq=290 Ack=322 Win=5840 Len=0</td>
<td></td>
</tr>
<tr>
<td>14285</td>
<td>1527176718</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>74 51031 > http [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK PErr=1</td>
<td></td>
</tr>
<tr>
<td>14286</td>
<td>1527173424</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>80 http 51831 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460</td>
<td></td>
</tr>
<tr>
<td>14287</td>
<td>1527173481</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>54 51831 > http [ACK] Seq=1 Ack=1 Win=14600 Len=0</td>
<td></td>
</tr>
<tr>
<td>14288</td>
<td>1527173593</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>HTTP</td>
<td>421 GET / HTTP/1.1</td>
<td></td>
</tr>
<tr>
<td>14289</td>
<td>1527173538</td>
<td>192.168.0.37</td>
<td>192.168.0.37</td>
<td>TCP</td>
<td>68 http 51831 [ACK] Seq=1 Ack=368 Win=5473 Len=0</td>
<td></td>
</tr>
</tbody>
</table>

Hypertext Transfer Protocol

GET / HTTP/1.1\r\n
Host: 192.168.0.37\r\n
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-US,en;q=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
DNT: 1\r\n
Connection: keep-alive\r\n
Upgrade-Insecure-Requests: 1\r\n
Authorization: Basic cGw5D0IzOm5lb3BpeGVsbm90\r\n
Credentials: pl9823:neopixelnot\n
\r\n[Full request URI: http://192.168.0.37/]

8120 6f 64 65 6e 67 7a 69 70 2c 20 64 65 66 oding: g zip, def
8130 6c 61 74 65 6d 69 6e 64 6e 67 7a 69 70 late..DN T: 1..Co
8140 6e 65 67 7a 69 70 7c 74 65 70 64 65 66 inention : keep-a
8150 6c 69 76 65 6d 65 70 74 65 70 74 65 7a live..Up grade-In
8160 73 65 63 73 74 75 70 6d 65 70 74 65 7a secure-R equests:
8170 70 31 6d 6a 6a 74 75 65 73 65 74 75 70 1..Auth orizatio
8180 73 65 63 73 74 75 70 6d 65 70 74 65 73 n: Basic cGw50DI
8190 74 65 63 73 74 75 70 6d 65 70 74 65 73 zOm5lb3B peGvsm9
81a0 30 60 0a 68 0a 0...
And then the web page is displayed
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 54 15030 > http [ACK] Seq=1 Ack=1 Win=1460 Len=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1282</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 54 15030 > http [ACK] Seq=321 Ack=173 Win=15544 Len=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1283</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 54 15030 > http [ACK] Seq=321 Ack=173 Win=15544 Len=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1284</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 171 [TCP segment of a reassembled PDU]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1285</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 60 http 5180 [RST, ACK] Seq=290 Ack=322 Win=5840 Len=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1286</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 74 15031 > http [SYN] Seq=0 Win=1460 Len=0 MSS=1460 SACK PERM=1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1287</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 60 http 51831 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1288</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 54 15031 > http [ACK] Seq=1 Ack=1 Win=1460 Len=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1289</td>
<td>490.4760933</td>
<td>192.168.0.37</td>
<td>TCP 60 http 51831 [ACK] Seq=1 Ack=368 Win=5473 Len=0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
GET / HTTP/1.1
Host: 192.168.0.37
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Authorization: Basic cGw5ODIzOm5lB38pegVsbm90
Credentials: pl9823:neopixelnot

[Full request URI: http://192.168.0.37/]
```
HTTPS vs HTTP

- The simple answer to this problem is instead of doing http:// We do https:// ... But we can't because the ESP8266 does not do https.

- Then, of course you ask the question - who cares if my lights get change by some hacker. And the answer is probably nobody. But this is an example of Internet of Things (IOT) and the Things are often much more critical that whimsical flashy lights Things like:
 - Live Billboards - you might not get paid if someone draws a mustache on the local politician
 - Pond pumps - could flood your yard and kill your goldfish (real story, but probably not a hacker).
 - Room lights
 - Greenhouse control
 - Pacemakers
 - Predator Drones Just sayin...
 - ...

Our proposed solution is to create a middle man to handle https. So the http is only on a LAN, not the less forgiving WAN.

More on security next time.

Hardware
Block Diagram showing controller chip, LEDs and how they are daisy chained.
WS2811

Signal line 256 Gray level 3 channel Constant current LED drive IC

Sequence chart:

- **0 code**
 - T0H
 - T0L

- **1 code**
 - T1H
 - T1L

- **RET code**
 - Treset

Cascade method:

- **reset code**
 - ≥ 50us

Data transmission method:

Note: The data of D1 is sent by MCU, and D2, D3, D4 through IC internal reshaping amplification to transmit.

Composition of 24bit data:

| R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | B7 | B6 | B5 | B4 | B3 | B2 |
|----|

Note: Follow the order of RGB to sent data and the high bit sent at first.
Data flow. The way these WS2811 led devices work is that 24 bits for each of the led RGB colours are sent down the data wire. So in the case of 5 LEDs, 24 x 5 = 120 bits are sent from the ESP8266.

1. The first led grabs the first 24 and latches them. The remaining 96 are sent to the second led

2. The second grabs the next 24 and the remaining 72 are sent on.

3. Etc. for all the LEDs in the chain.

NodeMCU ESP8266 Development Board

- NodeMCU is an open source IoT platform.\(^4\)\(^5\) It includes firmware which runs on the ESP8266 Wi-Fi SoC from Espressif Systems, and hardware which is based on the ESP-12 module.\(^6\)\(^7\) The term "NodeMCU" by default refers to the firmware rather than the development kits. (Wikipedia)
NodeMCU ESP8266

Schematic
To control the 5 Volt WS2811 (and others) with an ESP8266 at 3.3 volts you need to shift the level.

The data sheet states that a logic high input will be detected at a minimum voltage of $0.7 \times V_{cc}$. If you’re running the LED at 5V, this means $5 \times 0.7 = 3.5$ V will be needed for the WS2811 to detect a ‘1’ on the data line. While you might get away with using 3.3 V, after all the specification in the data sheet is meant to be a worst case, it’s possible that you’ll run into reliability issues.

To perform the level shift, a signal diode is placed in series with the power
supply of the first LED. This drops the first LED to 4.3 V, which means a
4.3 V * 0.7 = 3.01 V signal can be used to control it. The logic out of this
LED will be at 4.3 V, which is enough to power the rest of the LEDs
running at 5 V. This information came from hackaday.com.

Controlling using a 3.3V ESP8266
The 50K Ohm resistor is called a pull up resistor. It ensures that the Pi input pin is normally connected to 3.3 Volts. This ensures that the input is not floating. If it were left floating then random environmental electrical noise could cause the input to go from 0 to 1, like, randomly. Because the resistance is so high no significant current is flowing. 0.066 MilliAmps

1K Ohm resistor between the switch and the ground is in case we accidentally set the pin to output rather than input. This will limit the output current in case the pin is set to output and the switch closed.

You may need to debounce the input from a switch with some logic or delays. As the switch closes there is a period when it goes from open to closed a few times before it closes solidly. The easiest way to do this is to delay a few milliseconds before using a switch value. (https://en.wikipedia.org/wiki/Switch#Contact_bounce)

Are there topics you would like to see?