
PL9823 Web Controlled LEDs

Introduction

We thought we would start with something a bit whimsical.

Since we are early in the academic year

 With pole

 With another pole

 With LEDs

insOnPole.jpg
PoleX.jpg
flashInsulate.gif

This all started when my my wife decided that we should do something with the 60 or

so telephone insulators she has been collected for the past 30+ years. Perhaps put a

led in them and stick them in the garden she suggested.

So ... I went looking on Ali Express for cheap LEDs. Thinking a bunch of different

coloured LEDs would be fun. And I found:

 Not only are the LEDs any colour I want, they can be any

of 16 million or so colours. And they are individually

addressable. Each led in the circuit can be a different

colour and the colours can change.

 So I bought 100 of them!

 Then over the next several days - with much reading of

web pages and tutorials and libraries - I managed to get

them to work.

Thanks to:

 http://fastled.io/

 The guy with the Swiss accent:

https://www.youtube.com/watch?v=YJQG9JnDemM&t

=7s

 https://hackaday.com/2017/01/20/cheating-at-5v-ws2812-

control-to-use-a-3-3v-data-line/

And I built the following. The real thing is wandering about here somewhere with a

battery attached to it.

http://fastled.io/
https://www.youtube.com/watch?v=YJQG9JnDemM&t=7s
https://www.youtube.com/watch?v=YJQG9JnDemM&t=7s
https://hackaday.com/2017/01/20/cheating-at-5v-ws2812-control-to-use-a-3-3v-data-line/
https://hackaday.com/2017/01/20/cheating-at-5v-ws2812-control-to-use-a-3-3v-data-line/

 The NodeMCU ESP8266 micro-controller runs the show

https://en.wikipedia.org/wiki/NodeMCU

 The push button cycles through the various led programs

that I wrote

 The LEDs, of course, light up

 And the prototype board holds it all together and provides

electrical connections

I then spent the next month off and on writing led "programs" so that pushing

the button does something.

 I currently have 8 programs that flash the lights in various

ways,

 obviously, there are an infinite number of possibilities.

 If you changed the layout of the LEDs to say - a grid -

you could show pictures ...

It then occurred to me that use a web page could web control the selection of

light program.

 Thanks to the ESP8266s built in wifi and web server.

 So I did

Details

Code

 The code was written in the Arduino IDE and

compiled and uploaded to the ESP8266 with

the Arduino IDE.

 The IDE is running on a Raspberry Pi.

 Click here for information on Installing the

Arduino IDE on the Raspberry Pi

And there is a problem. We put a password on the request

to get the web page to change the lights but look:

Anyone with network packet analyzer like wireshark can see the ID and

Password!

http://drsol.com/~deid/pi/esp1/index.html#InstallArduinoIDE
http://drsol.com/~deid/pi/esp1/index.html#InstallArduinoIDE
https://www.wireshark.org/

And then the web page is displayed

HTTPS vs HTTP

 The simple answer to this problem is instead of doing

http:// We do https:// ... But we can't because the

ESP8266 does not do https.

 Then, of course you ask the question - who cares if my

lights get change by some hacker. And the answer is

probably nobody. But this is an example of Internet of

Things (IOT) and the Things are often much more

critical that whimsical flashy lights Things like:

o Live Billboards - you might not get paid if someone

draws a mustache on the local politician

o Pond pumps - could flood your yard and kill your

goldfish (real story, but probably not a hacker).

o Room lights

o Greenhouse control

o Pacemakers

o Predator Drones Just sayin...

o ...

Our proposed solution is to create a middle man to handle https. So the http is

only on a LAN, not the less forgiving WAN.

More on security next time.

Hardware

Block Diagram showing controller chip, LEDs and how they are daisy

chained.

Data flow. The way these WS2811 led devices work is that 24 bits for

each of the led RGB colours are sent down the data wire. So in the case

of 5 LEDs, 24 x 5 = 120 bits are sent from the ESP8266.

1. The first led grabs the first 24 and

latches them. The remaining 96 are sent

to the second led

2. The second grabs the next 24 and the

remaining 72 are sent on.

3. Etc. for all the LEDs in the chain.

NodeMCU ESP8266 Development Board

o NodeMCU is an open source IoT

platform.[4][5] It includes firmware which

runs on the ESP8266 Wi-Fi SoC from

Espressif Systems, and hardware which is

based on the ESP-12 module.[6][7] The

term "NodeMCU" by default refers to the

firmware rather than the development

kits. (Wikipedia)

https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/NodeMCU#cite_note-nodemcu_firmware-4
https://en.wikipedia.org/wiki/NodeMCU#cite_note-nodemcu_firmware-4
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/ESP8266
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/w/index.php?title=Espressif_Systems&action=edit&redlink=1
https://en.wikipedia.org/wiki/NodeMCU#cite_note-Espressif_Systems-6
https://en.wikipedia.org/wiki/NodeMCU#cite_note-Espressif_Systems-6
https://en.wikipedia.org/wiki/NodeMCU

NodeMCU ESP8266

Schematic

Controlling using a 5V Arduino

3.3 V ESP 3.3V vs 5V PL9823

To control the 5 Volt WS2811 (and others) with an ESP8266 at 3.3 volts

you need to shift the level.

The data sheet states that a logic high input will be detected at a minimum

voltage of 0.7 * Vcc. If you’re running the LED at 5V, this means 5 V *

0.7 = 3.5 V will be needed for the WS2811 to detect a ‘1’ on the data line.

While you might get away with using 3.3 V, after all the specification in

the data sheet is meant to be a worst case, it’s possible that you’ll run into

reliability issues.

To perform the level shift, a signal diode is placed in series with the power

supply of the first LED. This drops the first LED to 4.3 V, which means a

4.3 V * 0.7 = 3.01 V signal can be used to control it. The logic out of this

LED will be at 4.3 V, which is enough to power the rest of the LEDs

running at 5 V. This information came from hackaday.com.

Controlling using a 3.3V ESP8266

Button

https://hackaday.com/2017/01/20/cheating-at-5v-ws2812-control-to-use-a-3-3v-data-line/

o The 50K Ohm resistor is called a pull up resistor. it

ensures that the Pi input pin is normally connected

to 3.3 Volts. This ensures that the input is not

floating. If it were left floating then random

environmental electrical noise could cause the input

to go from 0 to 1, like, randomly. Because the

resistance is so high no significant current is

flowing. 0.066 MilliAmps

o 1K Ohm resistor between the switch and the ground

is in case we accidentally set the pin to output

rather than input. This will limit the output current

in case the pin is set to output and the switch

closed.

o You may need to debounce the input from a switch

with some logic or delays. As the switch closes

there is a period when it goes from open to closed a

few times before it closes solidly. The easiest way

to do this is to delay a few milliseconds before

using a switch value.

(https://en.wikipedia.org/wiki/Switch#Contact_bou

nce)

Are there topics you would like to see?

https://en.wikipedia.org/wiki/Switch#Contact_bounce
https://en.wikipedia.org/wiki/Switch#Contact_bounce

