Interfacing Sensors & Modules to Microcontrollers

Presentation Topics

I. Microprocessors & Microcontroller
II. Hardware/software Tools for Interfacing
III. Type of Sensors/Modules
IV. Level Inputs (Digital ON/OFF)
V. Example 1: Interfacing Random Pulses From Radiation Detector
VI. Example 2: Interfacing Pulse Inputs with Coded Information
VII. Synchronous & Asynchronous Communication
VIII. Using Bluetooth SPP with Virtual Com Ports, Android Cell Phones/Tablets
IX. Interfacing Motion Sensing Devices
X. Example 3: Wing Control Actuating System – Catastrophe Avoidance
The first complete single-chip microprocessor, Intel's 4004, was introduced in 1971.

Gary Boone of Texas Instruments was working on quite a similar concept and invented the microcontroller- TMS1802NC.

Microprocessor - a central processor on a chip
- Building block to create a computing devices
- ROM, RAM, I/O Ports, decoding logic are added to the bus system

Microcontroller - a chip that contains a central processor plus RAM, ROM, I/O Ports
- Microcontrollers are a complete computing/processing system
- Can be programmed in assembler, C, and in many high-level languages
- Interfacing involves attaching I/O devices (sensors and modules) to I/O Ports
- The internal bus system is not available to attach I/O devices
Microprocessor Transistor Counts 1971-2011 & Moore's Law

The diagram shows the transistor count of microprocessors from 1971 to 2011. Moore's Law states that the number of transistors on a microprocessor doubles every two years, as indicated by the upward trend line on the graph. Each point on the graph represents a specific processor introduced at a given date, with the transistor count on the y-axis and the date of introduction on the x-axis.

The curve shows that the transistor count has doubled every two years, starting from a small number in 1971 and reaching a much higher number by 2011, reflecting exponential growth.
Interfacing Sensors & Modules to Microcontrollers

Generally requires software/hardware tools

Useful tools
Hardware Tools

- Breadboards – come in all shape and sizes
- Adapter PCB converter boards – available for most MCU’s footprints
- PCB boards designed for specific MCU – Eagle Software
- Temperature controlled soldering iron – SMD devices
- Wire wrap Gun
- Hot Air rework gun
- Digital multimeter
- Oscilloscope
Software Tools

- **Eagle Software** – creating PCB boards
 - Limited to 2 schematic sheets, 2 signal layers, and 80 cm² board area
- **Tera Term** – Terminal emulator ASCII serial communication
- **Realterm** - Serial and TCP terminal for engineering and debugging
- **Bluetooth SPP Pro** – android phone/tablet
Off the Shelf Adapter PCB Converter Boards
PCB Boards Designed for Specific MCU
Name That Sensor/Module

1. [Image of sensor 1]
2. [Image of sensor 2]
3. [Image of sensor 3]
4. [Image of sensor 4]
5. [Image of sensor 5]
6. [Image of sensor 6]
7. [Image of sensor 7]
8. [Image of sensor 8]
INTERFACING LEVEL & COMMUNICATION DEVICES

LEVEL DEVICES (Digital ON/OFF)

- INPUT(s)
 - One or more digital inputs hardwired to pins
 - Can be switch closures or pulses random or otherwise

- PULSES
 - Carry no other information other than the occurrence of an event
 - Pulse Width (or Pulse Position) contains coded information - in RC (Radio Control) pulse width contains data to position an RC servo motor
Processing Events

POLLING
- Pin(s) are continuously read until a change of state takes place
- Useful to initiate a start up
- Not very useful when other tasks need to be done

INTERRUPTS
- An interrupt occurs when a change of state occurs in a hardwired pin
- The CPU saves its current state and immediately services the interrupt
- MCUs have many internal/external interrupts and are serviced according to priority
Interfacing Random Pulses From Radiation Detector

- **Project Background**
 - 207 Pachube IoT
 - Nuclear accident in Japan 2011 – Xively
 - Pachube -> LogMeIn –Cosm >Xively
 - 2013 Xively Public Cloud for the IoT
 - 2018 Xively purchased by Google
The measurement of ionizing radiation is sometimes expressed as being a rate of counts per unit time. For low level of ionizing radiation, it is convenient to use counts per minute (CPM).

Pulses from Radiation Detector are random ranging 0 CPM to many CPM.
Interfacing Random Pulses From Radiation Detector

- **PROGRAM DESCRIPTION**
- **INPUT**
 - One hardwired pin configured to generate an interrupt on each leading edge of the random pulses
 - On Pin Interrupt - Count variable is increased by 1 - Interrupt is reset
- **TIME WINDOW**
 - Generated by a PWM (pulse width modulator)
 - PWM runs continuously independent of current code being executed by CPU
 - PWM generates a software interrupts at the end of each time window
 - Sets a Flag - Count is ready for processing - Software Interrupt is reset
- **MAIN PROGRAM**
 - Initializes variables
 - Loop on Flag (waits for a PWM to set Flag)
 - Process data
 - Display results
 - Back to Loop
Interfacing Random Pulses From Radiation Detector

- Program Radiation Monitor
 - Using Cypress PSOC4
Interfacing Pulse Inputs with Coded Information

- **ENCODING/DECODING PWM of RADIO CONTROLLED (RC) SERVO MOTORS**

- **RC Servo Motors have many uses including**
 - Radio controlled boats, planes, cars, robotics, cat/dog doors

- **Are of special interest because they are easily controlled by MCUs without the need of a Radio TX**
 - Come in all sizes, are inexpensive and can be modified internally for special applications

- **A servo motor can be positioned by a MCU by supplying a PERIODIC PULSE in a specified time frame of 20 ms - 50 Hz**

- **The actual WIDTH of the PULSE (coding) determines the amount of rotation of a servo motor about a neutral axis.**
Interfacing Pulse Inputs with Coded Information

SERVO MOTOR CONTROL

20ms

50 Hz

0 Degrees

1ms (0.5ms)

90 Degrees

1.5ms

180 Degrees

2ms (2.5ms)
Interfacing Pulse Inputs with Coded Information

- The Pulse width to position a servo motor ranges from 1 MS to 2 MS or 5% to 10% of the period
- A convenient and flexible way is to use a 16-bit PWM
 - The Period of the PWM to 20 MS and not varied
 - The pulse width is then varied according to required position
Interfacing Pulse Inputs with Coded Information

- **Demonstration Program**
 - Uses a 16-bit PWM
 - At design time the period is set to 20 MS. The Pulse width set to 1.5 MS
 - On power up, the program waits for a switch closure
 - On each switch closure the servo motor cycles from extreme left, neutral, to extreme right corresponding to a rotation of -60° to 0° to +60°
Decoding Radio Controlled Pulses from a Receiver

- Decoding the Pulse width has many interesting applications
 - The angular velocity of an RC Servo Motor can be reduced
 - The Mystery Device can be
 - A DC motor whose speed is proportional to the Pulse Width
 - A mechanical/electronic relay with OFF/ON function controlled by Pulse Width
Decoding Radio Controlled Pulses from a Receiver

Demo Program
Rate Reducer

- Input
 - Hardwired pin from receiver
 - Configured for Interrupts

- 16-bit Down Counter
 - Initialized and clocked to produce a count corresponding to a time in the range of 1 MS to 2 MS

- Output
 - Hardwired pin(s) to hardware device
Serial communication is either **Synchronous** or **Asynchronous**

- Synchronous serial communication uses a clock
 - 4-wire – SPI - Motorola
 - 3-wire – SPI - Maxim IC
 - 2-wire – I2C – Phillips Semiconductor
 - 1-wire – Dallas Semiconductor
 - 2- wire specific - Avia Semiconductor -HX711
 - 1-wire analog bus -DTMF
Asynchronous communication does not use a clock

- Communication needs to be set to one of the standard communication rates (baud rate)
- Baud rates range from 110 to 25600 bits/sec with tolerance deviation of approximately 6%
- RS-232 – 2-wire unbalanced & referenced to ground
- RS-485 – 2-wire differential pair signals that improve noise immunity and distance
Bluetooth SPP

- Emulates a serial cable to provide a simple substitute for existing RS-232, communication including the familiar control signals
- "A serial cable is replaced by a secure wireless connection"
- SPP Bluetooth Transceiver Modules are designed to connect to MCUs using RS-232 communication (UART Tx/Rx of an MCU)
- Bluetooth Transceiver Modules can connect with each other or to PC, Cell Phones and Tablets
- For Android devices download and install “Bluetooth spp Pro”. It’s free.
Interfacing Bluetooth SPP

Hardware Requirements

- One SPP Module (for cell phone/tablet) or two SPP Modules (using 2 MCUs)
 - Modules come in many forms
 - Some are transceivers (Tx & Rx)
 - Some are individual Tx or Rx
 - Some have fixed BAUD rates
 - The HC-05 is transceiver with baud rates up to 115200

- USB to Serial Converter Module
 - Modules plug into a USB port of a PC
 - The output of the modules are the RS-232 pins
 - Example- Mini FT232RL 3.3V 5.5V FTDI
 - Pins: DTR, RXD, TX, VCC, CTS, GND
Interfacing Bluetooth SPP

- HC-05 Bluetooth Module
- FTDI USB to Serial Converter
The HC-05 Bluetooth Module
- HC-05 Bluetooth Modules are NOT ALL the same
- Pin names and order may be different
- Some have a binding switch

Default Settings of HC-05
- Baud Rate: 1200, Data Word: 8 bits, Parity: none, Stop Bit: 1
- PW 1234
- Slave

Changing Default Settings
- Done by AT Commands

Demo
- Viewing and changing settings of a HC-05 SPP Module
Interfacing Bluetooth SPP

- Demos
 - Viewing and changing settings of a HC-05 SPP Module
 - Cell Phone/Tablet
Interfacing Bluetooth SPP – Cell phone/Tablet
Interfacing Bluetooth SPP – Cell phone/Tablet
INTERFACING MOTION SENSING DEVICES BASED ON MEMS TECHNOLOGY

- MEMNS Micro-Electro-Mechanical Systems
 - Devices and structures that are made using the techniques of microfabrication

- MEMS SENSING DEVICES INCLUDE
 - Accelerometers, Gyroscopes, Magnetometers, Pressure
 - Combination of two or more of the above

- Examples
 - MMA7455 Tri-Axial accelerometer (3 DOF)
 - MPU-6050 (6 DOF) accelerometer & gyroscope
 - LSM9DSO - Adafruit accelerometer, gyroscope magnetometer
 - ADIS16480 (Analog Devices) - Ten DOF
INTERFACING MOTION SENSING DEVICES BASED ON MEMS TECHNOLOGY

- COMMON FEATURES
 - Supply voltage 5 v or 3.0 V to 3.6 V
 - I/O pins 3.0 V to 3.6 V max
- Communication is Synchronous
 - I²C, SPI, usually both
Interfacing MMA7455 Tri-Axial accelerometer Using I^2C Communication

I^2C Communication

- Popular because of its simplicity
- More software overhead
- Uses two signal wires with Pull Up resistors for communication
- Communication speed can be 100 KHz or 400 KHz
- There can be only one Master and many Slave
- Master initiates ALL communication
Interfacing MMA7455 Tri-Axial accelerometer Using I²C Communication
Interfacing MMA7455 Tri-Axial accelerometer Using I²C Communication

- MMA7455 Module
Interfacing MMA7455 Tri-Axial accelerometer Using I²C Communication

- MMA7455 Module Schematics
Interfacing MMA7455 Tri-Axial accelerometer Using I^2C Communication

- **Features**
 - Digital Output (I2C/SPI)
 - Low Current Consumption: 400 μA
 - Self-Test for Z-Axis
 - Low Voltage Operation: 2.4 V – 3.6 V
 - Level Detection for Motion Recognition (Shock, Vibration, Freefall)
 - Pulse Detection for Single or Double Pulse Recognition
 - Selectable Sensitivity (±2g, ±4g, ±8g) for 8-bit Mode
Interfacing MMA7455 Tri-Axial accelerometer Using I²C Communication

- Communication Protocol
 - All communication from and to the Master is in packets of 8 bits
 - Communication is initiated by the Master by sending a Start to the Slave using a 7 bit address Plus a R/W bit (0 /1)
 - R/W bit indicates whether to Write to or Read from the Slave
 - Slave acknowledges by sending AK
 - Communication continuous with Master sending the address of the register to write or read from followed by data
 - Communication is terminated by the Master sending a Stop Condition
Interfacing MMA7455 Tri-Axial accelerometer Using I²C Communication

- Example: To set Sensitivity ±2g
- Master Writing to a Single of the MMA7455L (R/W bit MSB)
Interfacing MMA7455 Tri-Axial accelerometer Using I2C Communication

- Example: To read the acceleration on the x-axis
- Master Reading from a Single Register of the MMA7455L (R/W bit MSB)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AK</td>
<td>AK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AK</td>
<td>AK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AK</td>
<td>AK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AK</td>
<td>Data [7:0]</td>
</tr>
</tbody>
</table>

![Diagram of I²C communication between Master and Slave devices](image-url)
Wing Control Actuating System

- Catamarans Flip!
Wing Control Actuating System

- Project Uses Two Separate Controllers Linked by Bluetooth
- Master Controller
 - Reads X.Y,Z Acceleration at a regular timed interval
 - Transmits to the Slave Module one of two control codes based on pre-set limits on each of the three axis
 - Control codes indicate normal condition - do nothing or remove RC from operator
Wing Control Actuating System

- **Slave Controller**
 - Continuously reads Control Codes from Master Controller
 - Under Go conditions the RC signal from receiver is decoded by the MCU and passed on to the servo controlling the tail. Operator has full RC control
 - Under No Go the MCU RC signal is replaced by a 1 ms pulse to put the tail in Neutral position
Wing Control Actuating System

- Controller Used In This Project
Wing Control Actuating System

- Program
- Demo