
Starting with an understanding of NumPy library for Python
NumPy's role in data analysis:

array operations;
multidimensional arrays called ndarray (1-D is a list, 2-D is like a spreadsheet, 3-D is like a Rubik's cube,
which can be imagined as a list of lists or spreadsheets)
descriptive statistics
and a whole lot more...beyond this presentation's scope

Whearas pandas is known for:

adding on to NumPy functionality
time series functionality
ways to manage missing data
labeled axes which prevent errors in data alignment
Series (1-D) and DataFrames (2-D)

This notebook is based on https://docs.scipy.org/doc/numpy/user/quickstart.html (https://docs.scipy.org
/doc/numpy/user/quickstart.html)

the link has great list of methods, clickable near the end

The main unit in NumPy is the multidimensional array

values of all same type, usually numbers
indexed by tuple
dimensions are called axes
numpy.array is not the same as Python's built-in array.array which is 1-D and relatively basic

Examples of ndarrays (n-dimensional arrays)

Array with one axis with 3 elements; length is 3; shape is (1, 3)

[1, 2, 1]

Array with 2 axes, each with length 3; size is (2, 3)

[[1., 0., 0.],

 [0., 1., 2.]]

The NumPy website lists noteable methods to explore right at the start: ndarray.ndim, .shape, .dtype, .itemsize,
.data

In [1]:

Out[1]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

import numpy as np
a = np.arange(15) # create array with one axis, from 0 up to but not including 15
a

1NumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

1 of 7 2018-03-14, 8:34 PM

In [2]:

In [3]:

In [4]:

Farm example - basic operations
Farms are all in B.C., greater than 11 acres.
Each data point is the number of farms in each category, ie. beef or grain
The farms array is one column of data from a .csv found kinda randomly among openly-shared data online
It's altered slightly to fit a length of 12 for some calculations later

In [5]:

In [6]:

In [7]:

Operations on whole array

In [8]:

In [9]:

In [10]:

Out[2]: array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14]])

Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

Out[4]: (15,)

Out[5]: array([63, 47, 127, 13, 9, 56, 34, 33, 21, 32, 170, 0])

Out[6]: array([68, 52, 132, 18, 14, 61, 39, 38, 26, 37, 175, 5])

Out[7]: array([False, False, True, False, False, False, False, False, False,
 False, True, False], dtype=bool)

Out[8]: 605

Out[9]: 0

Out[10]: 170

a.reshape(3, 5) # convert to 3 axes

a # was a actually changed when .reshape was applied?... no

a.shape # we expect it to be 1-D with length 15

farms = np.array([63,47,127,13, 9, 56,34,33,21,32,170,0]) # create 1-apex array, has one list as arg
farms

addition and subtraction require equal-sized arrays; multiplication & exponents, etc don't

let's see what the numbers look like if every category rose by 5 farms next year

farms + 5 # farms remains unchanged

are any values > 100?
farms > 100

np.sum(farms) # total number of farms

np.min(farms) # lowest count of farms in a category (ie. beef)

np.max(farms) # largest value in the farms array

1NumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

2 of 7 2018-03-14, 8:34 PM

In [11]:

In [12]:

In [13]:

In [14]:

In [15]:

In [16]:

In [17]:

3-D array example

In [18]:

Indexes in arrays

In [19]:

In [20]:

Out[11]: array([[63, 47, 127, 13],
 [9, 56, 34, 33],
 [21, 32, 170, 0]])

Out[13]: array([[63, 47, 127, 13],
 [9, 56, 34, 33],
 [21, 32, 170, 0]])

Out[14]: (3, 4)

Out[15]: 2

Out[16]: array([93, 135, 331, 46])

Out[17]: array([13, 9, 0])

Out[18]: array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],

 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

Out[19]: array([63, 47, 127, 13, 9, 56, 34, 33, 21, 32, 170, 0])

Out[20]: 127

farms.reshape(3,4) # see it as a multi-apex array

farms2 = farms.reshape(3,4)

farms2

farms2.shape # version 2 of farms has 3 rows of 4 elements

farms2.ndim # has 2 dimensions, like a spreasheet or matrix

use axis parameter to do operations along a row
farms2.sum(axis=0) # sum of each column

farms2.min(axis=1) # minimum in each row

b = np.arange(24).reshape(2,3,4) # create array with 24 items, starting at 0
looks like 2 collections of 3 rows with 4 elements each
b

farms # print farms again

farms[2] # extract a value from 1D array; 0-indexed

1NumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

3 of 7 2018-03-14, 8:34 PM

In [21]:

In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

Out[21]: array([127, 13, 9])

Out[22]: array([[63, 47, 127, 13],
 [9, 56, 34, 33],
 [21, 32, 170, 0]])

Out[23]: 33

Out[24]: array([47, 56, 32])

[63 47 127 13]
[9 56 34 33]
[21 32 170 0]

63
47
127
13
9
56
34
33
21
32
170
0

want to extract slice from 127 (3rd element, index 2) to 9 (5th element, index 4)
farms[2:5] # slice from index 2 up to but not including index 5

multidimensional arrays use tuples for index
farms2 # see array b again

farms2[1,3] # extract row with index 1, and element with index 3
aka row 2, column 4

extract a column
farms2[0:3, 1] # row 1 to 3, at column 2
farms2[: ,1] # same thing

another way to display array
for row in farms2:

print(row)

.flat breaks apart a 2D array for display and operations
for element in farms2.flat:

print(element)

1NumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

4 of 7 2018-03-14, 8:34 PM

In [27]:

Diabetes example - basic math and stats

In [28]:

In [29]:

In [30]:

In [31]:

In [32]:

94.5
70.5
190.5
19.5
13.5
84.0
51.0
49.5
31.5
48.0
255.0
0.0

Out[28]: [[5.6, 7.8, 6.0], [12.2, 4.4, 6.7]]

[5.6, 7.8, 6.0]
[12.2, 4.4, 6.7]

Out[30]: [[5.6, 7.8, 6.0], [12.2, 4.4, 6.7]]

Out[31]: list

Out[32]: array([[5.6, 7.8, 6.],
 [12.2, 4.4, 6.7]])

calculate number of farms if they rose 50%
for element in farms2.flat:

print(element * 1.5)

each row is one day's before-meal breakfast, lunch, and dinner measurement in mmol/L
typical goal is around 5.5 mmol/L
too high or low means you had too much/little insulin at last meal

bgCan = [[5.6 , 7.8, 6.0], [12.2, 4.4, 6.7]] # create a list of lists
bgCan

for row in bgCan:
print(row)

bgCan # data output retains 'list' look

so find out its type
type(bgCan)

bgCan = np.array(bgCan) # create array from list of 2 lists
bgCan # finally looks like a 2D array

array has 2 days, 3 meals each

1NumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

5 of 7 2018-03-14, 8:34 PM

In [33]:

In [34]:

In [35]:

In [36]:

In [37]:

In [38]:

In [39]:

[[100.8 140.4 108.]
 [219.6 79.2 120.6]]
[[100.8 140.4 108.]
 [219.6 79.2 120.6]]

Out[34]: array([[100, 140, 108],
 [219, 79, 120]], dtype=int32)

Out[35]: array([[5.6, 12.2],
 [7.8, 4.4],
 [6. , 6.7]])

Out[36]: array([[5.6, 7.8, 6.],
 [12.2, 4.4, 6.7]])

Out[37]: 4.4000000000000004

4.4

12.2

convert Canadian diabetic blood sugar mmol/L to American mg/dL
handy because much literature is published for Americans
multiply mmol/L by 18 to get mg/dL

for row in bgCan:
print(bgCan * 18)

since American units are larger, re-do as integers
make new array from (bgCan * 18) and set data type to integer
bgUS = np.array(bgCan * 18, dtype='int32')
bgUS

transpose bgCan
bgCan.T
now have 2 columns of 3 rows; each day is a column now, and each meal gets an apex

back to the original couple of days of meal data
bgCan

max and min are now interesting, and easy once the data is in an array
np.min(bgCan)

better to use a variable so the output is formatted nicely
bg_min = np.min(bgCan) # get lowest value in whole array
print(bg_min) # show the value just as it appears in array

bg_max = np.max(bgCan) # get max value
print(bg_max)

1NumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

6 of 7 2018-03-14, 8:34 PM

Counting poses a problem
Nice to also get counts of values below 4.5 or so
Also nice to count values over 9 or so when fasting (several hours after meals)
Can't find a count method built in to NumPy AND Python basics don't work with NumPy's ndarrays

Something like this doesn't work here:

count = 0

for item in bgCan:

 if item < 4.6:

 count += 1

In [40]:

In [41]:

In [42]:

We really need pandas now for counts and more

Out[40]: array([[False, False, False],
 [False, True, False]], dtype=bool)

You had 1 low value(s) at 6 meals.

temporary solution
bg_low = bgCan < 4.5
bg_low # there is one value less than 4.6, at row 2, column 2

then count the True values
bg_low_count = np.count_nonzero(bg_low)

or even more clearly build it into a human sentence
print("You had", bg_low_count, "low value(s) at", bgCan.size, "meals.")

1NumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

7 of 7 2018-03-14, 8:34 PM

