INumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

Starting with an understanding of NumPy library for Python

NumPy's role in data analysis:

e array operations;

e multidimensional arrays called ndarray (1-D is a list, 2-D is like a spreadsheet, 3-D is like a Rubik's cube,
which can be imagined as a list of lists or spreadsheets)

e descriptive statistics

e and a whole lot more...beyond this presentation's scope

Whearas pandas is known for:

e adding on to NumPy functionality

o time series functionality

ways to manage missing data

labeled axes which prevent errors in data alignment
Series (1-D) and DataFrames (2-D)

This notebook is based on https://docs.scipy.org/doc/numpy/user/quickstart.html (https://docs.scipy.org
/doc/numpy/user/quickstart.ntml)

e the link has great list of methods, clickable near the end

The main unit in NumPy is the multidimensional array

values of all same type, usually numbers

indexed by tuple

e dimensions are called axes

e numpy.array is not the same as Python's built-in array.array which is 1-D and relatively basic

Examples of ndarrays (n-dimensional arrays)

Array with one axis with 3 elements; length is 3; shape is (1, 3)
[1, 2, 1]

Array with 2 axes, each with length 3; size is (2, 3)

[(r ., 0., 0.1,
[0., 1., 2.1]

The NumPy website lists noteable methods to explore right at the start: ndarray.ndim, .shape, .dtype, .itemsize,

.data

In [1]: import numpy as np
a = np.arange(l5) # create array with one axis, from 0 up to but not including 15
a

out[l]: array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

1of7 2018-03-14, 8:34 PM

INumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

In [2]: a.reshape(3, 5) # convert to 3 axes
Out[2]: array([[O, 1, 2, 3, 4],
[5, 6, 7, 8, 91,
[io, 11, 12, 13, 141])
In [3]: a # was a actually changed when .reshape was applied?... no

out[3]: array([O, 1, 2, 3, 4, 5, 6, 171, 8, 9, 10, 11, 12, 13, 14])

In [4]: a.shape # we expect it to be 1-D with length 15

out[4]: (15,)

Farm example - basic operations

e Farms are all in B.C., greater than 11 acres.

e Each data point is the number of farms in each category, ie. beef or grain

e The farms array is one column of data from a .csv found kinda randomly among openly-shared data online
e [|t's altered slightly to fit a length of 12 for some calculations later

In [5]: farms = np.array([63,47,127,13, 9, 56,34,33,21,32,170,0]) # create l-apex array, he
farms

Oout[5]: array([63, 47, 127, 13, 9, 56, 34, 33, 21, 32, 170, 01])

In [6]: # addition and subtraction require equal-sized arrays; multiplication & exponents, et
let's see what the numbers look like if every category rose by 5 farms next year
farms + 5 # farms remains unchanged

out[6]: array([68, 52, 132, 18, 14, 61, 39, 38, 26, 37, 175, 5])

In [7]: # are any values > 100?
farms > 100

Out[7]: array([False, False, True, False, False, False, False, False, False,
False, True, False], dtype=bool)

Operations on whole array

In [8]: np.sum(farms) # total number of farms

out[8]: 605

In [9]: np.min(farms) # lowest count of farms in a category (ie. beef)

out[9]: O

In [10]: np.max(farms) # largest value in the farms array

out[10]: 170

20of 7 2018-03-14, 8:34 PM

INumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

In [11]: farms.reshape(3,4) # see it as a multi-apex array

Out[ll]: array([[63, 47, 127, 13],
[9, 56, 34, 33],
[21, 32, 170, 011)

In [12]: farms2 = farms.reshape(3,4)

In [13]: farms2

Out[13]: array([[63, 47, 127, 13],
[9, 56, 34, 33],
[21, 32, 170, 011)

In [l4]: farms2.shape # version 2 of farms has 3 rows of 4 elements

out[l4]: (3, 4)

In [15]: farms2.ndim # has 2 dimensions, like a spreasheet or matrix

Out[1l5]: 2

In [l6]: # use axis parameter to do operations along a row
farms2.sum(axis=0) # sum of each column

Out[1l6]: array([93, 135, 331, 46])

In [17]: farms2.min(axis=1) # minimum in each row

Out([1l7]: array([13, 9, 0])

3-D array example

In [18]: np.arange(24).reshape(2,3,4) # create array with 24 items, starting at 0

b =
looks like 2 collections of 3 rows with 4 elements each
b

Out[18]: array([[, 1, 2, 31,

[0

[4, 5, 6, 71,

(8 9, 10, 1117,
[riz, 13, 14, 1s5],

[16, 17, 18, 191,

[20, 21, 22, 23111)

Indexes in arrays

In [19]: farms # print farms again

Out[19]: array([63, 47, 127, 13, 9, 56, 34, 33, 21, 32, 170, 01)

In [20]: farms[2] # extract a value from 1D array; O-indexed

Oout[20]: 127

3of7 2018-03-14, 8:34 PM

INumPy_intro

4 of 7

In [21]:

out[21]:

In [22]:

out[22]:

In [23]:

out[23]:

In [24]:

Out[24]:

In [25]:

In [26]:

http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

want to extract slice from 127 (3rd element,

array([127, 13, 91)

multidimensional arrays use tuples for index
farms2 # see array b again

array([[63, 47, 127, 13],
[9, 56, 34, 33],
[21, 32, 170, 011)

farms2[1,3] # extract row with index 1, and element with index 3

aka row 2, column 4

33

extract a column
farms2[0:3, 1] # row 1 to 3, at column 2
farms2[: ,1] # same thing

array([47, 56, 32])

another way to display array
for row in farms2:
print (row)

[63 47 127 13]
[9 56 34 33]
[21 32 170 0]

.flat breaks apart a 2D array for display and operations

for element in farms2.flat:
print(element)

63
47
127
13

56
34
33
21
32
170

index 2) to 9 (5th element, index 4)
farms[2:5] # slice from index 2 up to but not including index 5

2018-03-14, 8:34 PM

INumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

In [27]: # calculate number of farms if they rose 50%
for element in farms2.flat:
print(element * 1.5)

94.5
70.5
190.5
19.5
13.5
84.0
51.0
49.5
31.5
48.0
255.0
0.0

Diabetes example - basic math and stats

In [28]: # each row is one day's before-meal breakfast, lunch, and dinner measurement in mmol,
typical goal is around 5.5 mmol/L
too high or low means you had too much/little insulin at last meal

bgCan = [[5.6 , 7.8, 6.0], [12.2, 4.4, 6.7]] # create a list of lists
bgCan

Out[28]: [[5.6, 7.8, 6.0], [12.2, 4.4, 6.7]]
In [29]: for row in bgCan:
print(row)

[5.6, 7.8, 6.0]

[12.2, 4.4, 6.7]
In [30]: bgCan # data output retains 'list’' look
out[30]: [[5.6, 7.8, 6.0], [12.2, 4.4, 6.7]]
In [31]: # so find out its type

type (bgCan)
Out[31l]: 1list

In [32]: bgCan = np.array(bgCan) # create array from list of 2 lists
bgCan # finally looks like a 2D array

array has 2 days, 3 meals each

Out[32]: array([[5.6, 7.8, 6. 1,
[12.2, 4.4, 6.711)

S5of7 2018-03-14, 8:34 PM

INumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

In [33]: # convert Canadian diabetic blood sugar mmol/L to American mg/dL
handy because much literature is published for Americans
multiply mmol/L by 18 to get mg/dL

for row in bgCan:
print(bgCan * 18)

[[100.8 140.4 108.]
[219.6 79.2 120.6]]
[[100.8 140.4 108.]
[219.6 79.2 120.6]]

In [34]: # since American units are larger, re-do as integers
make new array from (bgCan * 18) and set data type to integer
bgUS = np.array(bgCan * 18, dtype='int32')
bgUs

Out[34]: array([[100, 140, 108],
[219, 79, 120]], dtype=int32)

In [35]: # transpose bgCan
bgCan.T
now have 2 columns of 3 rows; each day is a column now, and each meal gets an apex

Out[35]: array([[5.6, 12.2],
[7.8, 4.41,
[6., 6.711)

In [36]: # back to the original couple of days of meal data

bgCan
Out[36]: array([[5.6, 7.8, 6. 1,
[12.2, 4.4, 6.711)
In [37]: # max and min are now interesting, and easy once the data is in an array
np.min(bgCan)
Out[37]: 4.4000000000000004
In [38]: # better to use a variable so the output is formatted nicely

bg min = np.min(bgCan) # get lowest value in whole array
print(bg min) # show the value just as it appears in array

4.4
In [39]: bg max = np.max(bgCan) # get max value
print(bg max)

12.2

6 of 7 2018-03-14, 8:34 PM

INumPy_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10...

Counting poses a problem

e Nice to also get counts of values below 4.5 or so
o Also nice to count values over 9 or so when fasting (several hours after meals)
e Can't find a count method built in to NumPy AND Python basics don't work with NumPy's ndarrays

Something like this doesn't work here:

count = 0
for item in bgCan:
if item < 4.6:

count += 1

In [40]: # temporary solution
bg low = bgCan < 4.5
bg low # there is one value less than 4.6, at row 2, column 2

Out[40]: array([[False, False, False],
[False, True, False]], dtype=bool)

In [41]: # then count the True values
bg low_count = np.count_nonzero(bg_low)

In [42]: # or even more clearly build it into a human sentence
print("You had", bg low count, "low value(s) at", bgCan.size, "meals.")

You had 1 low value(s) at 6 meals.

We really need pandas now for counts and more

7 of 7 2018-03-14, 8:34 PM

