
C
Lots of it, and more!

1/34

Table of Contents
Introduction..3
A simple C example...4
Language composition...5
Keywords...6
Operators..9
Language concepts and structures...11
C Libraries...13
C Preprocessor directives...14

Predefined preprocessor macros...15
Strings and string formatting...17

The printf style formatting..17
C file input/output..19

File descriptors..20
Streams..21

Building programs...22
The simple case...22
The general case..22
Use make to automate builds..22
Build steps in detail...23

Preprocess...23
Compile..23
Assemble..23
Link..23
Run...24
Debug...24

Processing command line arguments...25
References..26

GNU C..26
Other useful C references..26
Raspberry Pi GPIO C code...26
Interesting articles on building programs..26

Appendix A - Example code..27
List a Directory (from gnu.org)...27
Defining, declaring, calling and using functions..28
Function pointers...29
Function typedef pointers..31
Variable arguments list..33

2/34

Introduction
This presentation assumes that you have some familiarity with programming. It also assumes you're running on Linux. It aims to provide the details
needed to understand how to write C, from the simplest programs to relatively complex ones. The limited time available necessitates skimming over
much of the material presented here.

C is a compiled, low level programming language. It is old (circa 1972), but the de-facto language used to implement interpreted languages such as
Python, Bash etc; and for the majority of programs requiring low-level, fast code.

Being a compiled language, it is an order of magnitude faster than interpreted languages, because interpreted languages are interpreted by a run-time
engine (written in C!). Whereas C's interpretation is done at compile time and the result is executed by the CPU, eliminating run-time interpretation.

Oh, and C is ubiquitously portable, running on just about every processor. Which minimises your need to understand multiple CPU architectures when
writing portable programs.

C evolves, slowly and with some reluctance for change given its age and extensive usage. Releases aim to maintain solid backward compatibility, and
which version of C you choose to use depends on your expected platforms. C89/90 is old but reliably portable. C99 has added a modest number of
nice features. C11 is the latest standard and is not yet fully implemented. The default for gnu C is C11, but you can choose which C version you want
gcc to conform to.

C is to an extent ill-defined even with the attempted conformance of various standards applied to it. The temptation to extend its basic facilities has
been too much for C vendors, making it all too easy to write a C program on one platform and then find it doesn't compile or run ok on another. And
the utilities used to compile, link, run and debug your program may vary too. So, before you start programming, try to have an idea of what system(s)
you'll want your program to run on, and code appropriately. Your knowledge of C needs to be very good to write a fully portable program of any
significant size. And expect to do lots of testing and revision as you go along.

Unusually, but usefully, C is essentially a symbiosis of two languages: pure “C”; and the “C preprocessor” cpp. Preprocessing is performed
automatically.

3/34

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Standards.html#C-Language

A simple C example
Here's “hello world” in C. First, create file “hello.c” containing code:

#include <stdio.h>
int main () {
 printf ("Hello world!\n");
}

Then build hello.c to produce an executable hello (cc is the name of the C compiler):

cc -o hello hello.c

Then run it:

./hello

That outputs to the window where you typed ./hello:

Hello world!

File “hello.c” includes C library file stdio.h, which contains the C declarations of various standard input/output functions (such as printf) and

associated bits and pieces. Such “header files” as stdio.h are located in some system-dependent standard place such as under /use/include/.

The C preprocessor gets first dibs on the C code and processes lines whose first non-space character is #. To it, #include means: “include the

contents of the specified file here”. The preprocessor does literally copy the contents of stdio.h into the code at that point.

The int main () declares a function called main, which is necessary in all programs because main is the “starting function” for the execution of the

whole program.

The function has a “body part” containing the code to be executed when main is called, and that is: {printf("Hello world!\n");}

The \n added to the string is the new-line character – printf does not automatically issue a new line.

The cc command invokes the compiler and linker. The -o hello option causes it to generate an executable file called hello, and the supplied

argument hello.c gives it the name of the file to compile. Invisibly, that file is compiled to assembler (the kind of assembler is specific to the kind of

processor), which is automatically assembled to a temporary hello.o “object file”. Then the hello.o, and stdio.o (located in some system-

dependent standard place but typically within the C standard library libc.a or libc.so) are linked to form the hello executable.

4/34

Language composition
The textual language is defined at the lowest level in terms of the lexis / lexicon / lexical structure. The C language consists of:

keywords int for while void return break

symbols (operators and delimiters) = >= (* >= +=

names (aka identifiers) a Fred radius b9 small_parts

literals (numbers, characters, strings) 44 5.6 'a' "abc"

separators (space, tab, newline)
comments /* Some comment. */

(can be spread over multiple lines)
or
// Some comment.

(ends at the end of the line)

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters, underscores and digits (0 to 9).

5/34

https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html

Keywords
The 44 C11 (i.e. 2011) language keywords.

auto A now-redundant storage class.

break Break out of a loop. break;

case Used in labeling a statement that is one of a switch
statement's multi-way branches for the switch value.

case 65: c = 'A';

case 'A': c = 'A';

char An integer type that is typically a byte (8-bits),
representing one character.

char a_char = 'w';

Sets a_char to 119 (i.e. Ascii w)

const Type qualifier for a constant. const a_const = 44;

You can't change a_const afterwards.

continue Jump to the end of a loop, triggering the next iteration. continue;

default Labels a statement within a switch statement, that is
jumped to if none of the case labels match the switch
statement's value.

default: c = ' ';

do Starts a do loop. i = 1;
do
 printf ("i: %d\n", i++);
while (i <= 4);

double Type qualifier indicating double-precision (64-bit)
floating point.

double f_dbl = 1.0 / 3;

else The else part of an if statement. if (n > 4)
 gt_4 = 1;
else
 gt_4 = 0;

enum Used to define an enumeration type. enum names{Bob, Sally};

Equivalent to:
int Bob = 0, Sally = 1;

Or choose your own numbers:
enum names{Bob=12, Sally=20};

extern Indicates something is externally defined. extern int ext_int;

The ext_int is defined in an external file.

float Type qualifier indicating single-precision (32-bit)
floating point.

float f_sgl = 1.0 / 3;

6/34

for Starts a for loop. for (i = 1; i <= 4; i++)
 print("i: %d\n", i);

goto Jump to a label goto fred;
...
fred: x = 12;

if Starts an if statement. if (n > 4) printf("n gt 4\n");

inline Request that the specified function be inlined to save
the overhead of a function call.

inline int freq_func() { ... }

int An integer type (usually 32-bits) int i = 2147483647;

long Type qualifier indicating a longer integer type - usually
twice as many bits. However, on Linux sizeof(int) ==
sizeof(long int) and you need long long int to get a 64-
bit integer.

long long int ll_int = 9223372036854775807;
// 2 ** 63 - 1

register Storage class encouraging variable to be held in a
CPU register.

register int oft_used;

restrict Optimization aid indicating that a specific pointer is the
only one to access some specific structure.

void* memcpy (void* restrict s1,
 const void* restrict s2,
 size_t n);

return Exits from a function and optionally returns a value. return;
return 42;

short Type qualifier indicating a shorter integer type - usually
half as many (16) bits.

short int sh_int = 32767;

signed Type qualifier indicating the integer type is signed (the
default).

sizeof An expression operator (actually not a function)
providing the size in bytes of a type or variable.

nbytes = sizeof(int); // nbytes is 4.

static Storage class making a variable global to the file. static int in_file;

struct Defines a structure. struct person {char *name; int age;};
struct person Bob = {"Bob", 42};
print("Bob's age: %d\n", Bob.age);

switch Starts a switch statement. switch (i) {
 case 1: printf("i is 1\n"); break;
 default: printf("i not 1\n");
}

typedef Defines a new type derived from some other type. typedef unsigned short int ushint;
ushint x = 65535;

7/34

union Same as struct except all members are overlaid. union a_union {int f; int f_too};
union a_union same_adr;
same_adr.f = 42; // same_adr.f_too is also now 42.

unsigned Type qualifier indicating the integer type is unsigned. unsigned short ush_int = 65535;

void Explicitly indicates no value. void a_fn(void);
// (Function with no return value, no parameters)

void *p;
// Makes p a no-type pointer. Each usage must
// then explicitly state its type:
p = (int *) &x; // (Where x is an int)
*(int *)p += 2; // Adds 2 to x.

volatile Tells compiler that variable may change unexpectedly.
Only reliable use is for memory-mapped hardware.

volatile short *vol_p = (short *) 0x1000000;
// (0x1000000 is mapped to a 16-bit hardware
// register.)

while Starts a while loop. while (i <= 4) printf("i: %d\n", i);

_Alignas

_Alignof

_Atomic

_Bool

_Complex

_Generic

_Imaginary

_Noreturn

_Static_assert

_Thread_local

Notes:

8/34

Operators
The following is taken from http://en.cppreference.com/w/c/language/operator_precedence :-

The following table lists the precedence and associativity of C operators. Operators are listed top to bottom, in descending precedence.

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement

Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement

Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of[note 1]

_Alignof Alignment requirement(C11)

3 * / % Multiplication, division, and remainder

Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6
< <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively

7 == != For relational = and ≠ respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13[note 2] ?: Ternary conditional[note 3]

Right-to-Left
14

= Simple assignment

+= -= Assignment by sum and difference

*= /= %= Assignment by product, quotient, and remainder

<<= >>= Assignment by bitwise left shift and right shift

&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Comma Left-to-right
1. ↑ The operand of sizeof can't be a type cast: the expression sizeof (int) * p is unambiguously interpreted as (sizeof(int)) * p, but not

sizeof((int)*p).

2. ↑ Fictional precedence level, see Notes below

9/34

http://en.cppreference.com/w/c/language/operator_precedence#cite_ref-2
http://en.cppreference.com/w/c/language/operator_precedence#cite_ref-1
http://en.cppreference.com/w/c/language/operator_precedence#cite_note-3
http://en.cppreference.com/w/c/language/operator_precedence#cite_note-2
http://en.cppreference.com/w/c/language/operator_precedence#cite_note-1
http://en.cppreference.com/w/c/language/operator_precedence

3. ↑ The expression in the middle of the conditional operator (between ? and :) is parsed as if parenthesized: its precedence relative to ?: is

ignored.

When parsing an expression, an operator which is listed on some row will be bound tighter (as if by parentheses) to its arguments than any operator
that is listed on a row further below it. For example, the expression *p++ is parsed as *(p++), and not as (*p)++.

Operators that are in the same cell (there may be several rows of operators listed in a cell) are evaluated with the same precedence, in the given
direction. For example, the expression a=b=c is parsed as a=(b=c), and not as (a=b)=c because of right-to-left associativity.

Common operators

assignment
increment
decrement

arithmetic logical comparison
member
access

other

a = b
a += b
a -= b
a *= b
a /= b
a %= b
a &= b
a |= b
a ^= b
a <<= b
a >>= b

++a
--a
a++
a--

+a
-a
a + b
a - b
a * b
a / b
a % b
~a
a & b
a | b
a ^ b
a << b
a >> b

!a
a && b
a || b

a == b
a != b
a < b
a > b
a <= b
a >= b

a[b]
*a
&a
a->b
a.b

a(...)
a, b
(type) a
? :
sizeof
_Alignof (since C11)

10/34

http://en.cppreference.com/w/c/language/operator_other
http://en.cppreference.com/w/c/language/operator_member_access
http://en.cppreference.com/w/c/language/operator_member_access
http://en.cppreference.com/w/c/language/operator_comparison
http://en.cppreference.com/w/c/language/operator_logical
http://en.cppreference.com/w/c/language/operator_arithmetic
http://en.cppreference.com/w/c/language/operator_incdec
http://en.cppreference.com/w/c/language/operator_incdec
http://en.cppreference.com/w/c/language/operator_assignment
http://en.cppreference.com/w/c/language/operator_precedence#cite_ref-3

Language concepts and structures
Iteration Stmt There are 3 kinds of loop statements, allowing for

repeated execution of statements.

for (init; cond; step) stmt // General for loop
for (;;) stmt // Infinite loop
while (cond) stmt // while loop
do stmt while (cond); // do loop

Jump Stmt There are 4 kinds of jump statements. These
provide various ways to exit loops and functions,
or goto a specific labeled statement (mostly
deprecated).

break;
continue;
return expr;
return;
goto label;

Selection Stmt Here's where you select between various code
paths.

if (icond) stmt
if (icond) stmt else stmt
switch (expr) stmt

Labeled Stmt You label a statement if you want to be able to
jump to that statement.

identifier: stmt // So you can goto that stmt.
case const-expr: stmt // case stmt, used in a switch.
default: stmt // default case stmt.

Compound Stmt When you want to have consecutive statements. {stmts}

Expression Stmt As in mathematical expressions, but with
esssential differences to facilitate the
programming world.

x = y + z * 3;
my_value += 44;

Statement Any of the above Stmts. A stmt always has a
terminating semicolon.

Function Similar to mathematical functions, but with
esssential differences to facilitate the
programming world.
You can reference a function before it is defined
by declaring it first.

void fmul (double a, double b); // Just declare fmul

int main (int argc, char **argv) {
 printf ("Number of arguments: %d\n", argc-1);
 (void)fmul (1, 2);
 return 0;
}

void fmul (double a, double b) { // Define function fmul
 printf ("%f * %f is %f\n", a, b, a * b);
}

Type definition Defines a new type derived from some other type. typedef unsigned short int ushint;
ushint x = 65535;

Variable declaration A variable must be declared before it is used. This
specifies the variable's type. Its value is undefined
until a value is assigned to it.

int x;
int y = 4 + x; // Not a good idea if x is undefined!

Record structure Holds multiple values.
Note: you can pass a struct to a function, and
return a struct.

// Define struct person:
struct person {char *name; int age;};

// Define Bob of type struct person:
struct person Bob = {"Bob", 42};
print("Bob's age: %d\n", Bob.age); // Struct member access

11/34

struct my_bits {unsigned int three_bits : 3;
 unsigned int two_bits : 2;}
// (A 3-bit and a 2-bit field. You can only store 0-7 in
// three_bits, and 0-3 in two_bits. But, overall, it fits
// n 5 bits of space, so is very compact.)

Record union Holds one of a selection of values. union a_union {int f; int f_too};
union a_union same_adr;
same_adr.f = 42; // same_adr.f_too is also now 42.

Array definition Holds a list of values of the same type. Note: the
name of an array is a pointer to its first element.

type name[length]; // General 1D form (uninitialised).
int ary[] = {1, 2, 3}; // Create and init array.
type name[length1][length2]; // 2D form (uninitialised).
double ary2D[2][3] = {{1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}};

Array indexing Indexing starts at 0. There are no bounds checks. v = ary[1]; // Set v to the 2nd element of ary, i.e. 2
v2 = ary2D[0][2];
// (sets v2 to the 0,1 element of ary2D, i.e. to 1.2)

String indexing Analogous to one-dimensional array indexing. char my_char = "abc"[1]; // Define and set my_char to 'b'.
char *my_str = "abc"; my_char = my_str[1];
// (Sets my_char to 'b').

Pointers Access by reference. A pointer is typically a 64-
bit address.

int my_int = 43;
int *pmy_int = &my_int; // pmy_int address of my_int.
*pmy_int = 44; // my_int is now 44.
pmy_int = NULL; // pmy_int is now a null pointer
// (A null pointer points to address 0).
struct person *pperson = &Bob;
// (Sets pperson to pointer to the Bob structure.)
int age = pperson->age;

...

Note: The goto statement can easily lead to obfuscated code and so is generally deprecated except when used to jump to a block of statements at the
end of a function, e.g.:

#include <stdio.h>

int ProcessFile(char *filename) {
 int result = 1;

 FILE *fd = fopen(filename, "r");
 if (!fd) goto cleanup; // fd is NULL, so file failed to open.

 ... Code to process the file contents goes here – each detected processing error issues: goto cleanup ...

cleanup:
 if (fd) fclose(fd); // fd is not NULL, so close the opened file.
 return result;
}

12/34

C Libraries
There are many C libraries. Some are used frequently and it is essential to be familiar with those. It is also generally useful to know of the other
libraries, and to research what external libraries may be available for any particular development project.

The GNU C Library provides a rich set of libraries. Some of the libraries, such as stdio, stdlib, string are essential for just about any program. See
here for information on the standard libraries.

To make use of the variables and functions defined in a library file, you have to include it in your program. You include the header (.h) file. When you
perform the link step, you need to then ensure that the body (.o or .so file) for each library file is linked in when building the resultant executable
program.

It's typical to have the includes grouped togther at the top of each file that needs them. E.g.:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

13/34

http://en.cppreference.com/w/c/header
https://www.gnu.org/software/libc/manual/html_node/

C Preprocessor directives
The C preprocessor is a standard precursor to compilation. Its directives are executed prior to compilation so don't have any runtime impact. The
preprocessor analyses the file, finds preprocessor directives, and immediately executes them. It does not evaluate the C code, but it does evaluate
preprocessor expressions.

#include Used to include code from other files. The code is literally
copied from the referenced file.

#include <lib_file> // Include code from library file
#include "my_file" // Include code from your file.

#if Analogous to the C if statement. #define DEBUG 1
#if DEBUG

 ... <code to enable debug> ...
#endif

#else Analogous to the C else statement. #define DEBUG 1
#if DEBUG

 ... <code to enable debug> ...
#else

 ... <non-debug specific code> ...
#endif

#elif Allows multiple else parts (no C analogy). #define DEBUG 1
#if DEBUG

 ... <code to enable debug> ...
#elif DEBUG == 2

 ... <code to enable extensive debug> ...
#else

 ... <non-debug specific code> ...
#endif

#endif Ends #if statements.

#ifdef An “if defined” if statement. #ifdef DEBUG

 ... <code to enable debug> ...
#endif

#ifndef An “if not defined” if statement. #ifndef DEBUG

 ... <code to disable debug> ...
#endif

#define
(Object-like)

#define identifier tokens

Used to create “macros”. Defines a preprocessor identifier.
Preprocessor identifiers are completely separate from C
identifiers. The tokens supplied must be valid C tokens, but
need not be valid C syntax, as far as the preprocessor is
concerned.
Bracketing variable names in tokens, plus the whole
substitution, is not required but is strongly recommended to
avoid any unexpected C interpretation of the preprocessed

#define X (1 | 2)
printf("X: %d\n", X); // Prints X: 3

14/34

end result.

#define
(Function-like)

#define identifier() tokens

There must be no spaces before the parentheses.
As for object-like, but used in a function-like manner.

#define MIN(A,B) (((A) <= (B)) ? (A) : (B))
v = MIN(100, v);

#undef Undefines a preprocessor identifier if it is defined. #undef DEBUG // Undefine DEBUG if it is defined.

#pragma Platform specific. #pragma GCC warning "look out!"
// Issues a warning messsage.

#error Issues an errro message. #error "That's wrong!!" // Issues an error message.

#line #line directives are generated by programs that generate C
code from some higher-level language. They generate #line
directives that give the originating file and line number.
Errors reported would then identify the originating file and
line.

#line 7 “higher.hlc”

...<Generated C code from line 7 of file higher.hlc>...

“Stringize”. Used within a function-line #define directive
to turn a parameter into a string.

#define stringify(v) #v
printf(“v, stringified: %s\n”, stringify(v))
// That prints: v, stringified: v

Performs “token pasting”. This merges two tokens into one
whilst macro-expanding.

#define cmd_prefix(v) cmd_##v
int cmd_prefix(fred) = 5;
printf(“Just set cmd_fred to: %d\n”, cmd_fred);

defined The only preprocessor keyword. Useful if, in one
preprocessor directive, you want to check if two
preprocessor identifiers are defined.

#if defined(BIG_INTS) & defined(SMALL_INTS)

Note: You can pass in a preprocessor define or value to a compilation command by using the -D flag, e.g.:
gcc -o sketchy -DDEBUG sketchy.c

 That causes the preprocessor to see DEBUG as defined.
Note: It is the general convention to use all uppercase for preprocessor identifiers.

Predefined preprocessor macros
__FILE__ Path string of current input file. "/usr/local/include/string.h"

__LINE__ Current line number. 44

__DATE__ 11-character date string "Jan 1 2017"

__TIME__ Time string. "15:30:01".

__STDC__ 1 usually! meaning the compiler is ISO standard C. 1

__STDC_VERSION__ The year and month of the C standard's version number. 201112

__STDC_HOSTED__ 1 if complete C standard library is available. 1

__cplusplus Defined if C++ compiler is in use, giving the language
standard's year and month.

201703

__OBJC__ Defined if is Objective-C.

15/34

__ASSEMBLER__ Defined when processing assembler language.

16/34

Strings and string formatting
A string is a sequence of characters (normally, one-byte ASCII characters). It is represented in C by enclosing the string of characters in double quotes,
e.g.:

char *my_string = "I'm a string\n";

Note that the type of a string is: char *

Note: You can change characters of a string, but you cannot change characters of a string literal. E.g.:

my_string[2] = 'M';

may or may not fail in practice, but should not be done because it's trying to change a string literal, which the C compiler/linker may choose to store in
read-only memory.

You can insert a small selection of non-printable characters by use of backslash escapes, e.g. the backslash n in the above example inserts the newline
character.

Adjacent string literals will be automatically joined together for you as though they were one long string. E.g.:

"abc"
"def"

is the same as:

"abcdef"

Strings are null terminated, i.e. terminated by a zero character '\0' (i.e. a byte of zero). C doesn't store the length of a string, so to determine the length
of some string, count its characters from the start of the string and stop when you encounter a '\0' character.

It is very useful, particularly when printing values, to have good string formatting capabilities. I.e. to have powerful, easy-to-use features for
parameterising strings and for then formatting the parameterised values in typically conventional ways, e.g. financial values in a spreadsheet.

String formatting consists of embedding format specifiers within a string, where the format specifier allows you to parameterise part of that string.
E.g. the following string has some fixed text, and some variable text (myname and myage).

"My name is myname, and I am myage years old."

The values to be substituted are passed to the formatting function (printf) along with the string to be formatted.

Since programming languages don't provide niceties such as italics, there has to be some convention whereby a format specifier can be embedded in a
string and recognised as a format specifier. At the same time, it is useful to enhance the format specifier to provide useful mechanisms for formatting
("converting”) the inserted variable values.

The printf style formatting
The general format specifier is a multi-character sequence:

17/34

%FW.PLT where F, W, P, L and T are parts of the format specifier.

% Introduces the start of the format specifier.

F Optional Conversion flags. Characters from the set:

 # 0 - + and space.

W Optional Minimum field width, or * to indicate the field width is supplied as one of the values. E.g. 10

.P Optional Precision, or .* to indicate the precision is supplied as one of the values. E.g. 2

L Optional Length modifier, one of:
 h l L

T Simultaneously marks the end of the format specifier and provides the conversion specifier, one of:
 d i o u x X e E f g G n s p %

See http://en.cppreference.com/w/c/io/fprintf for a description of the conversion specifiers. (And including the various printf-style functions.)

Python's basic usage of the printf format is quite similar to that of C:

C printf("STR%10.2fING", 012.345); STR 12.35ING

Python print("STR%10.2fING" % 012.345) STR 12.35ING

Almost identical, except that Python uses the % operator which eliminates the need for an explicit formatting function such as printf.

Examples:

printf("a:%d b:%.2f c:0x%X\n", 44, 5.123, 127); a:44 b:5.12 c:0x7f

18/34

http://en.cppreference.com/w/c/io/fprintf

C file input/output
Discussion here relates to Gnu C on Linux/UNIX, but other C's, and Windows and other operating systems, are typically quite similar.

There are two ways to do i/o in C: the low-level File descriptor; and the high-level Stream.

19/34

File descriptors
See https://www.gnu.org/software/libc/manual/html_node/#toc-Low_002dLevel-Input_002fOutput

This is a primitive, low-level i/o interface that may sometimes be appropriate to use.

A File descriptor is just a simple integer. The file descriptor integer is in fact an index into an array of descriptors (structs), where a struct contains
useful fields relating to a "File descriptor", such as current file position.

There are three file descriptors defined in <unistd.h> for input, output and error i/o: STDIN_FILENO, STDOUT_FILENO and

STDERR_FILENO. These have values 0, 1 and 2 respectively.

Files are "system-wide", and may be accessed simultaneously by multiple processes. There is necessarily a single system-wide table holding
information for each currently-accessed (i.e. "open") file. Another field of the file descriptor struct will be for referencing into that system-wide table.

Example program to read from a file whose path is supplied as an argument, and to write the contents of the file to stdout. Such a program would need
to be enhanced with more complete error handling etc. if it is to be used with confidence in all situations. Writing code to correctly handle i/o
opeerations at the primitive file descriptor level is not straightforward. I haven't included error reporting here because you'd generally always use
stream i/o for that and I don't want to mix descriptors and streams in this example!

#include <fcntl.h>
#include <unistd.h>
#include <errno.h>

int main (int argc, char **argv) {
 char buf[1024];
 ssize_t bytes_read;
 ssize_t bytes_written;
 int fd;

 fd = open (argv[1], O_RDONLY);
 if (fd < 0) return EXIT_FAILURE;

 // Loop reading 1024 bytes and writing the bytes until no more (which indicates either EOF or a read error).
 for (;;) {
 bytes_read = read (fd, buf, 1024);
 if (bytes_read < 0) return EXIT_FAILURE;
 if (bytes_read == 0) break; // EOF

 // Write all the bytes read. If writing is interrupted then keep trying.
 do {
 bytes_written = write (STDOUT_FILENO, buf, bytes_read);
 if (bytes_written < 0) return EXIT_FAILURE; // (A more "complete" implementation would check for EINTR interrupt
and continue here.)
 bytes_read -= bytes_written;
 } while (bytes_read > 0);
 }

 close (fd);
 return 0;
}

20/34

https://en.wikipedia.org/wiki/File_descriptor
https://www.gnu.org/software/libc/manual/html_node/Low_002dLevel-I_002fO.html#Low_002dLevel-I_002fO

Streams
See https://www.gnu.org/software/libc/manual/html_node/I_002fO-on-Streams.html#I_002fO-on-Streams

Streams provide a high-level interface that is generally used in preference to file descriptors.

The "handle" to a stream is held as a pointer to a FILE type, where FILE is a struct containing useful fields relating to the stream.

There are three streams defined in <stdio.h> for input, output and error i/o: stdin, stdout and stderr. These are of type FILE *.

Streams are implemented on top of file descriptors.

Example program to read from a file whose path is supplied as an argument, and to write the contents of the file to stdout. It is straightforward to code
this, but some care does need to be taken in getting a line of input and storing it prior to output, to ensure no “buffer overflow” is possible.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>

static size_t buf_size = 0; // The current size of the line buffer (it could increase if we encounter longer
lines).
static char* pbuf_start = NULL; // Pointer to the start of the current line buffer (it could change).

int main (int argc, char **argv) {
 FILE *fs;

 fs = fopen (argv[1], "r");
 if (!fs) {
 printf ("ERROR %d: Failed to open file: \"%s\". %s.\n", errno, argv[1], strerror(errno));
 return EXIT_FAILURE;
 }

 // Loop getting and printing lines until getline returns -1 (which indicates either EOF or a read error).
 while (getline (&pbuf_start, &buf_size, fs) != -1) { // Gnu C getline safely handles lines of any length.
 printf("%s", pbuf_start);
 }

 if (!feof(fs)) { // getline returned -1 but it's not EOF, so getline must have detected an error:
 printf ("ERROR %d: Failure during read of file: \"%s\". %s.\n", errno, argv[1], strerror(errno));
 return EXIT_FAILURE;
 }

 fclose (fs);
 return 0;
}

21/34

https://www.gnu.org/software/libc/manual/html_node/I_002fO-on-Streams.html#I_002fO-on-Streams

Building programs

The simple case
The simplest C program is just one file with includes of various standard libraries, which can be simply built and executed. E.g.:

Create a file hello.c using a text editor containing the four lines:

#include <stdio.h>
int main () {
 printf ("Hello World!\n");
 return 0;
}

At the terminal, type:

cc -o hello ./hello.c
./hello

The first line builds an executable hello and the second line runs it. The output is:

Hello World!

The general case
A larger and more sophisticated program is best split into multiple files, where the content of a file is code related to some distinct aspect of the overall
program.
For each aspect it is conventional to have two files: a header (e.g. logging.h) and a body (e.g. logging.c). The header contains definitions of
variables and functions that need to be accessible by code external to the body. The main file, containing the main function, is perhaps best organised
to not need a header file.

As there will be multiple files that need to be compiled, it is typical to use the make program to manage (re-)compiles and (re-)links of files, to
produce the end executable(s).

The overall development process is then:

• Create make build instructions in a file called Makefile
• Edit *.h header files and *.c body files.
• Run the make program to perform a build.
• Run and test the built program(s).

Repeat steps as necesssary to fix problems and improve the program(s).

Use make to automate builds
Use make to automate rebuilding your program(s). This requires a makefile describing the build steps. Using make saves much time over manually
re-typing build commands.

There is a nice description of makefiles on wikipedia.

22/34

https://en.wikipedia.org/wiki/Makefile

And a comprehensive description in the GNU make manual.

Build steps in detail
Starting with file.c containing C code you've created, these are the processing steps to turn it into an executable program :-

Preprocess

The C preprocessor parses file.c, looking for and obeying preprocessor directives. Each directive transforms part of the written code. The end result is
a preprocessed file.

 file.c -> preprocessed_file.c

 Note: You can use the -E option to see the preprocessed result, which will be output to stdout, or to a file specified by the -o option.
 Note: ONLY the preprocessing phase is performed if you specify -E.

Compile

The C compiler analyses the C code and generates processor-specific assembler for it, creating an assembler file.

preprocessed_file.c -> compiled_file.s

Note: You can use the -S option to see the generated assembler, which will be output to file.s (AND to any file specified by the -o option.)
Note: ONLY the preprocessing and compilation phases are performed if you sepecify -S.

Assemble

The assembler for the operating system processes the assembler code to an object file of byte-code machine instructions and data.

compiled_file.s -> assembled_file.o (“object” files)

Note: You can use the readelf utility to dump the generated object file in a readable format.

Link

The linker processes all object files into one executable file. This mostly involves fixing up addresses for references between object files.

assembled_file.o* -> executable_file

The linker inserts "startup" code specific to the C language that will set up the C environment prior to calling main.

The end result is a "loadable" executable file. I.e. a file that requires minimal further processing for actual execution (obeying the byte-coded
instructions contained in the executable file).

Static versus Dynamic linking
Linking can be performed statically or dynamically.

A static link pulls all referenced code into the generated executable_file.

A dynamic link doesn't pull in the library code - it is just referenced from the executable. The references are to “shared objects”, that is files that have
been assembled in a way that makes them shareable at execution time. Those files are created by the assembler and given the .so extension.

In general, dynamic linking is preferable to static linking, and dynamic linking is the default.

23/34

https://www.gnu.org/software/make/manual/make.html

Note: You can use the readelf utility to dump the generated executable file in a readable format.

Run

The operating system employs a loader program to read an executable_file and establish it in memory. It does that by memory-mapping the pages (a
page is 4096 bytes) of the executable. The executable's contents were arranged by the linker so that the contents start at 4096-byte disk byte
boundaries.

The loaded program is then executed, under control of the operating system which maintains separation between multiple running programs. Since
there are usually many more running programs than CPUs available, the programs are time-sliced across the CPUs. Pages are pulled into memory as
and when required for execution.

Debug

The GNU debugger gdb provides comprehensive debug facilities.

24/34

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/

Processing command line arguments
Processing command line arguments ("options") is only done once per program, but generally every program written needs it. Accordingly, there is a
library unistd.h available to assist. See here for: info on the getopt function used to do the processing of successive arguments; and link to an exampe

of how to use it. The getopt function assumes that named arguments are of the form:

-letter value

E.g.:

-b my_arg

Whether a value is needed or not depends on how you process the letter.

As an alternative, Gnu C recommends using getopt_long. This function is defined in the getopt library, not in unistd.h. It facilitates processing "long-
named options", i.e. arguments of the form:

--argument

where argument can be a name or: name=value

Abbreviations of the name are allowed provided thay are unique. Some --argument forms may allow a short form synonym, e.g. --help and -h would
generally work the same way.

Both getopt forms allow non-named arguments, which are simply arguments not preceded by any hyphens. These should be placed after all
hyphenated arguments.

25/34

https://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html#Using-Getopt

References

GNU C
G CC, the GNU Compiler Collection
The GNU C Reference Manual
The C Preprocessor
The GNU C Library
Extensions to the C Language Family
GNU make (not just for C)
GNU debugger gdb

Other useful C references
cppreference.com
Learn C Programming In Simple Steps
C Tutorial (tutorialspoint)
C Tutorial (Cprogramming.com)
Interactive C Tutorial (learn-c.org)
Learn C Programming
The C Book
Wikibooks: A Little C Primer (lots of examples)
Wikibooks: C Programming
Wikipedia C
Library Cheat Sheets
C Reference Card
Learn X in Y minutes Where X=c

Raspberry Pi GPIO C code
RPi_GPIO_Code_Samples#C

Interesting articles on building programs
Building programs - the detail
Shared libraries

26/34

http://amir.rachum.com/blog/2016/09/17/shared-libraries/
http://www.tenouk.com/ModuleW.html
https://elinux.org/RPi_GPIO_Code_Samples#C
https://learnxinyminutes.com/docs/c/
http://users.ece.utexas.edu/~adnan/c-refcard.pdf
http://ws3.ntcu.edu.tw/ACS099133/cheatsheet/c-libraries-cheatsheet.pdf
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikibooks.org/wiki/C_Programming
https://en.wikibooks.org/wiki/A_Little_C_Primer
https://en.wikibooks.org/wiki/A_Little_C_Primer
http://publications.gbdirect.co.uk/c_book/
https://www.programiz.com/c-programming
http://www.learn-c.org/
https://www.cprogramming.com/tutorial/c-tutorial.html
https://www.tutorialspoint.com/cprogramming/index.htm
http://www.c-programming-simple-steps.com/
http://en.cppreference.com/w/c
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/make/manual/make.html
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/C-Extensions.html#C-Extensions
https://www.gnu.org/software/libc/manual/html_node/
https://gcc.gnu.org/onlinedocs/cpp/
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
https://gcc.gnu.org/
https://gcc.gnu.org/

Appendix A - Example code

List a Directory (from gnu.org)

27/34

https://www.gnu.org/software/libc/manual/html_node/Simple-Directory-Lister.html

Defining, declaring, calling and using functions.

#include <stdio.h>

// Define function somefunc1:
char *somefunc1 (int x) {
 printf ("somefunc1 %d\n", x);
 return "ok";
}

// Declare function somefunc2:
char *somefunc2 (int);

// Declare function somefunc3.
// NOTE that the braces around somefunc3 have no effect.
char *(somefunc3)(int);

// Call the functions:
int main () {
 somefunc1 (5);
 somefunc2 (7);
 somefunc2 (9);
 return 0;
}

// Define function somefunc2:
char *somefunc2 (int x) {
 printf ("somefunc2 %d\n", x);
 return "ok";
}

// Define function somefunc3:
char *somefunc3 (int x) {
 printf ("somefunc3 %d\n", x);
 return "ok";
}

28/34

Function pointers

#include <stdio.h>

// Define function somefunc1:
char *somefunc1 (int x) {
 printf ("somefunc1 %d\n", x);
 return "ok";
}

// Declare function somefunc2:
char *somefunc2 (int);

// Declare function somefunc3.
// NOTE that the braces around somefunc3 have no effect.
char *(somefunc3)(int);

// Define pointer psomefunc.
// This pointer can point to any function that takes an int parameter and returns a char *.
// What makes this a pointer to a function is the ...(*...)(...) syntax.
// The pointer-to-a-function definition is VERY similar to a function declaration but with the
// named part being enclosed in (*...)
char *(*psomefunc)(int);

// Call the functions:
int main () {
 somefunc1 (3);
 somefunc2 (5);
 somefunc3 (7);

 psomefunc = &somefunc1; // Sets psomefunc to address of somefunc1.
 (*psomefunc)(9); // Call the function that psomefunc points to.

 psomefunc = somefunc1; // C allows you to omit the &, and does the sensible thing.
 (*psomefunc)(9); // Call the function that psomefunc points to.

 *psomefunc(9); // The braces around the function pointer aren't needed.

 psomefunc(9); // Also, the dereference isn't needed either - C does the sensible thing.

 return 0;
}

29/34

// Define function somefunc2:
char *somefunc2 (int x) {
 printf ("somefunc2 %d\n", x);
 return "ok";
}

// Define function somefunc3:
char *somefunc3 (int x) {
 printf ("somefunc3 %d\n", x);
 return "ok";
}

30/34

Function typedef pointers

#include <stdio.h>

// Define function somefunc1:
char *somefunc1 (int x) {
 printf ("somefunc1 %d\n", x);
 return "ok";
}

// Declare function somefunc2:
char *somefunc2 (int);

// Declare function somefunc3.
// NOTE that the braces around somefunc3 have no effect.
char *(somefunc3)(int);

// Define a type called PSOMEFUNC which is a pointer to any function that
// takes an int parameter and returns a char *.
typedef char *(*PSOMEFUNC)(int);

// Define pointer psomefunc.
// This pointer can point to any function that takes an int parameter and returns a char *.
// What makes this a pointer to a function is the ...(*...)(...) syntax.
// The pointer-to-a-function definition is VERY similar to a function declaration but with the
// named part being enclosed in (*...)
// (If you're using typedef, then you need to look at the typedef definition.)
PSOMEFUNC psomefunc;

// Call the functions:
int main () {
 somefunc1 (3);
 somefunc2 (5);
 somefunc3 (7);

 psomefunc = &somefunc1; // Sets psomefunc to address of somefunc1.
 (*psomefunc)(9); // Call the function that psomefunc points to.

 psomefunc = somefunc1; // C allows you to omit the &, and does the sensible thing.
 (*psomefunc)(9); // Call the function that psomefunc points to.

 *psomefunc(9); // The braces around the function pointer aren't needed.

 psomefunc(9); // Also, the dereference isn't needed either - C does the sensible thing.

31/34

 return 0;
}

// Define function somefunc2:
char *somefunc2 (int x) {
 printf ("somefunc2 %d\n", x);
 return "ok";
}

// Define function somefunc3:
char *somefunc3 (int x) {
 printf ("somefunc3 %d\n", x);
 return "ok";
}

32/34

Variable arguments list

// Program to demonstrate a simplistic printf.
// Provides a neat interface.

#include <stdio.h>
#include <stdarg.h>

// The allowed type indicators passable to function MyPrint.
enum types {Tint, Tstr};

// Expects two parameters: a "type" indicator; and a value of that type.
int MyPrint (int type, ...) {
 va_list args;
 int retval;
 int i;
 char *s;

 va_start (args, type);

 switch (type) {
 case Tint:
 i = va_arg (args, int);
 retval = printf ("%d\n", i);
 break;
 case Tstr:
 s = va_arg (args, char *);
 retval = printf ("%s\n", s);
 break;
 default:
 printf ("ERROR: Unknown type: %d\n", type);
 retval = -1;
 }

 va_end (args);
 return retval;
}

#define Try(stmt) if ((result = (stmt)) < 0) {return (result);}

int main() {
 int result;

 Try (MyPrint (Tint, 45));
 Try (MyPrint (Tstr, "Hi"));
 Try (MyPrint (99, 4.6));

33/34

 Try (MyPrint (Tint, 46));

 return 0;
}

34/34

	Introduction
	A simple C example
	Language composition
	Keywords
	Operators
	Language concepts and structures
	C Libraries
	C Preprocessor directives
	Predefined preprocessor macros

	Strings and string formatting
	The printf style formatting

	C file input/output
	File descriptors
	Streams

	Building programs
	The simple case
	The general case
	Use make to automate builds
	Build steps in detail
	Preprocess
	Compile
	Assemble
	Link
	Run
	Debug

	Processing command line arguments
	References
	GNU C
	Other useful C references
	Raspberry Pi GPIO C code
	Interesting articles on building programs

	Appendix A - Example code
	List a Directory (from gnu.org)
	Defining, declaring, calling and using functions.
	Function pointers
	Function typedef pointers
	Variable arguments list

