
Python Course
Session 6b – Regular Expressions

1/11

Table of Contents
Regular Expressions...3
Regex Pattern Syntax...4
Special Sequences..5

Notes..6
The re Module Functions..7

Notes..8
Match Objects...9
RE Examples..10
Useful Links..11

2/11

Regular Expressions
A regular expression (regex, or RE) is a mini-language embedded in Python as the re module. The
language syntax is unrelated to Python's syntax, being largely common across a variety of
programming languages. It provides an efficient way to define a pattern of characters.

The use of a regular expresssion is in finding occurrences of some designated pattern within
strings. The pattern is described using the "regex" language, coded as a string of characters. A built-
in match engine performs the matching process in a well-defined way, and methods are provided
that allow for returning the matches and modification of the matched portions of the string.

As a programmer, you construct your pattern and direct Python to use the pattern to find the
locations of the matches in a given string (e.g. one entered by the user or obtained from some
external data source).

A simple pattern is e.g. "ab", which matches once each within the strings: "ab", "drab", "able" and
"fabulous". And twice in "abstractable".

Python provides useful opportunities for what to do with the matches found, such as: split the string
at the matches; iterate over the matches; replace the matched parts with different strings.

A regex has a sufficiently complex language that it is in fact compiled on the fly and executed via a
C bytecode match engine, for efficient repetitive usage. You can obtain that compiled object and re-
use it explicitly (to avoid re-compilation), but Python automatically caches up to 512 compiled
regex's without you needing to worry about it. Regex's may be employed to parse whole languages,
so performance can be very important.

Note that the full power of regular expressions may not be required for simple string matches,
where it may be more straightforward to use appropriate string methods.

Some Unix/Linux utilities (such as grep) provide regex capabilities via the -E command line flag.

3/11

https://docs.python.org/3/howto/regex.html#use-string-methods
https://en.wikipedia.org/wiki/Comparison_of_regular_expression_engines
https://en.wikipedia.org/wiki/Comparison_of_regular_expression_engines
https://docs.python.org/library/re.html#
https://docs.python.org/howto/regex.html

Regex Pattern Syntax
The characters of a regex pattern are compared one-to-one with the string's characters, except when
encountering any of the 14 special characters:

 . ^ $ * + ? { } [] \ | ()

These have special meanings:

. Match any one char.

^

[^chars]

Match start of string.

Match a char not in the set of

chars. (chars can include

hyphenated char ranges e.g. a-z)

$ Match end of string.

RE*

RE*?

Match 0 or more RE's (greedy)

Match 0 or more RE's (non-greedy)

RE+

RE+?

Match 1 or more RE's (greedy)

Match 1 or more RE's (non-greedy)

RE?

??

Match 0 or 1 RE's (greedy)

Match 0 or 1 RE's (non-greedy)

RE{m}

RE{m,n}

RE{m,n}?

Match m number of RE's

Match m..n RE's (greedy)

Match m..n RE's (non-greedy)

[chars] Match one of a set of chars [a-zA-Z_] Matches alphabetics and _

[-a-z$?] Matches one of: - a-z $?

\e

\s

Escape special char e and match it

Match special sequence s

\$\\ Matches: $\

See Special Sequences

RE|RE Match one of the RE's (greedy) a|de|xyz Matches one of: a de xyz

(RE) Match the RE and add the matched
char sequence to the list of groups

A([a-z])B Adds e.g. AyB to the groups

(?chars) Python extensions

4/11

https://docs.python.org/3/library/re.html#regular-expression-syntax

Special Sequences
This table lists special sequences that can be used as part of a pattern:

\n Match the n'th group (n starts at 1) A([a-z])B\1 Matches e.g.: AwBw

\A Matches start of string

\b Matches start or end of a word

\B The negative of \b

\d Matches any one decimal digit 0-9 \d+ Matches e.g.: 596

\D The negative of \d

\s Matches any one whitespace char

\S The negative of \s

\w Matches any one word char:
a-zA-Z0-9_

\w+ Matches e.g.: Fred_9

\W The negative of \w \W Matches e.g.: @

\Z Matches end of string

Note that since our string is by default a Unicode string, the actual sets of decimal digits,
whitespace chars and word chars is more extensive than those listed. That generally makes using
these special sequences more appropriate than other regex sequences, particularly when dealing
with foreign languages.

5/11

Notes
Of note:

• All patterns in the examples are raw strings. It is generally recommended that raw strings

e.g. r"abc" are used for describing patterns, particularly if you need to use / in a pattern.

Otherwise Python interprets / and then the regex engine interprets / too, forcing you to use

a /// escape sequence, which is messy.

• Some special characters have different meanings depending on their syntactic location
within the match pattern.

• The match engine has some flags that can be applied that affect the interpretation of the

special characters. E.g. re.DEBUG may be useful for debugging complicated regex's.

• The characters of the pattern (taking into account the special meanings above) and the string
are compared sequentially from first to last. The whole pattern has to match or else there is
no match.

• The match engine backtracks if necessary. E.g. if the first | alternative matched but a

subsequent part of the pattern didn't, it backtracks to try the other | alternatives.

• A greedy construct matches as many characters as possible. A non-greedy construct
matches as few characters as possible.

• Special characters with the exception of \ lose their special meaning inside sets of chars.

• The regular expression object returned by re.compile has its own set of methods, which

are in essence a combination of the re module functions and match objects.

6/11

https://docs.python.org/library/re.html#match-objects
https://docs.python.org/library/re.html#module-contents
https://docs.python.org/library/re.html#regular-expression-objects
https://docs.python.org/library/re.html#module-contents

The re Module Functions
compile

regex_object = re.compile(pattern, flags=0)

Compile and return regex pattern into a regular expression object.

search
match_object = re.search(pattern, string, flags=0)

Search string for a match with pattern and return a corresponding match object.

match
match_object = re.match(pattern, string, flags=0)

Match pattern from start of string and return a corresponding match object or None.

fullmatch
match_object = re.fullmatch(pattern, string, flags=0)

Match pattern against the whole string and return a corresponding match object or

None.

split
split_list = re.split(pattern, string, maxsplit=0, flags=0)

Split string by up to maxsplit occurrences of pattern and return as a list.

findall
match_list = re.findall(pattern, string, flags=0)

Return all matches of pattern in string, as a list of strings (or tuples for groups).

finditer
match_iterator = re.finditer(pattern, string, flags=0)

Return an iterator yielding match objects over all matches of pattern in string.

sub
sub_string = re.sub(pattern, repl, string, count=0, flags=0)

Replace up to count occurrences of pattern in string by the replacement repl, and

return that new string.

subn
sub_tuple = re.subn(pattern, repl, string, count=0, flags=0)

As for sub, but return a tuple (new_string, number_of_subs_made).

7/11

https://docs.python.org/library/re.html#match-objects
https://docs.python.org/library/re.html#match-objects
https://docs.python.org/library/re.html#match-objects
https://docs.python.org/library/re.html#match-objects
https://docs.python.org/library/re.html#regular-expression-objects
https://docs.python.org/library/re.html#regular-expression-objects
https://docs.python.org/library/re.html#module-contents

Notes
Of note:

• The regular expression object returned by re.compile has its own set of methods, which

are in essence a combination of the re module functions and match objects.

• If the findall pattern has more than one group, the list returned is a list of tuples.

• The Python regex extension (?P<name>RE) allows use of named groups.

8/11

https://docs.python.org/library/re.html#match-objects
https://docs.python.org/library/re.html#module-contents
https://docs.python.org/library/re.html#regular-expression-objects

Match Objects
A match object is returned by some of the re functions and is typically used to obtain the group

matches. There are a number of useful methods, particularly groups and group. E.g.:

m = re.match(r"(\w+) (\w+), \w+", “Isaac Newton, physicist”)

m.group(0) # The full "(\w+) (\w+), \w+" match (whether grouped or not)
'Isaac Newton, physicist'

m.groups() # Tuple of each group match
('Isaac', 'Newton')

m.group(2) # The second group
'Newton'

m.group(1, 2, 1, 0) # Just list what you want to see in the returned tuple
('Isaac', 'Newton', 'Isaac', 'Isaac Newton, physicist')

You don't actually need the ".group" part, E.g.:

m[2]
'Newton'

Match object with named group:

m = re.match(r"(\w+) (?P<surname>\w+), \w+", “Isaac Newton, physicist”)

m["surname"]
'Newton'

9/11

https://docs.python.org/3/library/re.html#match-objects

RE Examples
A simple example of the match process for a pattern "abcdef" against a string "abcxef":

The a's match, the b's match, the c's match, but d doesn't match with x, so overall it didn't match.

A simple program matching a complex regex :-

import re

pattern = r"ABC[a-z]{2}DEF\w+ GHI(a|xy|dgp)JKL\1MNO([^rs])PQRx?STUr+VWX"
string = "ABCbdDEFfred GHIxyJKLxyMNOuPQRSTUrrrrVWX"

if re.fullmatch(pattern, string):
 print("Pattern:", pattern)
 print(“Matching string:”, string)
else:
 print("No match")

Pattern: ABC[a-z]{2}DEF\w+ GHI(a|xy|dgp)JKL\1MNO([^rs])PQRx?STUr+VWX
Matching string: ABCbdDEFfred GHIxyJKLxyMNOuPQRSTUrrrrVWX

How that complex pattern matches that string, and how it would match a similar one:

r"ABC[a-z]{2}DEF\w+ GHI(a|xy|dgp)JKL\1MNO([^rs])PQRx?STUr+VWX"

"ABCbdDEFfred GHIxyJKLxyMNOuPQRSTUrrrrVWX"

"ABCxxDEFjim GHIdgpJKLdgpMNOxPQRxSTUrVWX"

10/11

https://docs.python.org/library/re.html#regular-expression-examples

Useful Links
Online Python regular Expresssion evaluator and cheat sheet

Python Regex Cheatsheet

PythonSheets regex

shortcutFoo regex

11/11

https://www.shortcutfoo.com/app/dojos/python-regex/cheatsheet
https://www.pythonsheets.com/notes/python-rexp.html
https://www.debuggex.com/cheatsheet/regex/python
http://www.pyregex.com/

	Regular Expressions
	Regex Pattern Syntax
	Special Sequences
	Notes

	The re Module Functions
	Notes

	Match Objects
	RE Examples
	Useful Links

