
Who’s Knocking?

Mark G.

December 8, 2018

This presentation gives an overview of a do-it-yourself, front door, security
camera installation. Topics covered are a description of the installation, the
camera, the live monitor, and the motion sensing and recording software.

Technologies used in this system are:
• Tools for infrastructure manipulation (ladder, drill, hammer, drywall

saw) ;
• Network equipment (power over ethernet switch, VLAN capable switches);
• Security camera;
• Raspberry Pi 3B, running Raspbian, with a seven inch display;
• FreeBSD server running a jailed zoneminder system.

Contents

1 Tools and Structure 4
1.1 Mounted Camera . 5
1.2 Live Display . 6

2 Network 9
2.1 Network Cables . 9
2.2 Patch Panel . 11
2.3 Power Over Ethernet Switch . 11

3 Camera 12
3.1 Configuration . 13

3.1.1 Camera System Settings . 14
3.1.2 Camera System Security . 17
3.1.3 Camera System User Management 18
3.1.4 Camera Network Basic Settings . 19
3.1.5 Camera Network Advanced Settings 21
3.1.6 Camera Video / Audio Settings . 23

1

4 Raspberry Pi Live Display 24
4.1 Process and Method for Use . 26
4.2 Configuration . 26
4.3 OMXPlayer . 27

4.3.1 loop control.sh . 28
4.3.2 omx.sh . 28
4.3.3 start.sh . 29
4.3.4 q.sh . 29

5 ZoneMinder - FreeBSD Jail on VLAN 30
5.1 Jail Network Settings . 30
5.2 Host /etc/jail.conf Section . 30
5.3 Jail /etc/rc.conf . 31
5.4 ZoneMinder Jail Installation . 32

List of Figures

1 Front door camera location overview 5
2 Camera’s field of view . 5
3 Living room wall with live display off 6
4 Living room wall with live display on 7
5 Network closet access hole to the live display 8
6 Network closet covered access hole 9
7 Network cables running up to the attic 10
8 Patch panel . 11
9 Power-over-ethernet (PoE) switch . 11
10 Fuller view of network closet . 12
11 Close up of mounted camera . 12
12 EXIR Turret Network Camera retail box 13
13 Basic camera system information for the camera 14
14 Camera system time and network time protocol (NTP) settings 15
15 Camera system daylight savings time (DST) settings 16
16 Camera system security authentication settings 17
17 Camera system security IP address filter settings 17
18 List of camera users showing walleye display user 18
19 List of online camera users . 18
20 Camera network, basic IP settings 19
21 Camera network, basic port settings 20
22 Camera network, advanced SNMP disabled settings 21
23 Camera network, advanced HTTPS settings 22
24 Camera Video settings . 23
25 Element14 raspberry pi touchscreen display 24

2

26 Touchscreen display parts (picture attributed to element14 Community) 25

3

1 Tools and Structure

This section is for completeness. I needed various tools and bits of wood to complete
the project.

1. Ladder - I had to both access the attic and reach the soffit. Turns out I needed
an 8 foot step ladder and a 10 foot extension ladder. The step ladder was used for
mounting the camera to the soffit, while the extension ladder was used to access
the attic from inside the garage.

2. Wood - a used a 3/4 inch plank of plywood, and some pieces of two-by-four as a
structural base to hold the camera strongly in place. The plywood contacts the
top of the soffit from the attic side. It measures about 24 inches by 12 inches so
as to fit in between the joists.

3. Drill - I needed to drill a hole in the ceiling of the network closet to run ethernet
cables into the attic. I also used it for screwing the camera into the soffit/plywood.

4. Hammer - the plywood was a tight fit and needed some coaxing.

5. Drywall hole saw - this handy saw makes short work of drywall and was used to
carve out the mounting hole for the display and its access ports from the network
closet side.

4

1.1 Mounted Camera

The mounted camera is shown in figure 1. The camera is physically mounted on the
exterior of the house, through the soffit, and screwed into the 3/4 inch plywood, which
is fastened to the interior rafters in the attic.

Figure 1: Front door camera location overview

This positioning location allows the camera to have vision of the entire front porch, but
does not extend to the street, or any neighbours’ property. The camera’s field of view
is shown in figure 2.

Figure 2: Camera’s field of view

5

1.2 Live Display

The live display component was embedded into the living room wall directly adjacent to
the network closet. This was a lucky choice, since it removed a large chunk of cabling
work. It was the most natural location for the display since it allowed me to interact
with the display without also indicating my presence. I made a little movie with some
actions scenes; let’s see if it works.

Figure 3 shows the embedded display with the display in screen saver mode (blank
screen), and thus off.

Figure 3: Living room wall with live display off

Figure 4 shows the embedded display with the display on and showing a live stream of
the camera.

6

Figure 4: Living room wall with live display on

7

A look at the inside of the network closet (figure 5) shows the access holes for the RPi
and network cable. Figure 6 shows the covered access hole.

Figure 5: Network closet access hole to the live display

8

Figure 6: Network closet covered access hole

2 Network

The network portion of this project has more depth than this presentation hints at.
Some of the issues, briefly, include:

• the IPv4 addressing of the camera, RPi, and FreeBSD server. This address space
required creation of a virtual LAN (VLAN) to isolate camera related traffic. By
design, neither the camera nor the RPi display computer are accessible from the
Internet.

• the IPv6 addressing of the FreeBSD server, which allowed for easy routing to
the zoneminder web interface when connecting to my home using my OpenVPN
service. This allows secure access to the motion detected videos from outside my
home.

• the details of the patch panel installation and its cable connections.

• the details of the power over ethernet (PoE) switch installation. I’ve given a
presentation on PoE and it can be found on the vicpimakers.ca website.

2.1 Network Cables

I ran several category 5e cables into the attic. Figure 7 shows the group of cables running
up into the attic from the network closet. From the attic, I sent two cables towards the
front door’s soffit, another two going to the garage roof and two more to the garage’s

9

https://vicpimakers.ca/networking/power-over-ethernet/

workbench wall. I don’t have any pictures of the inside of the attic, mainly because I
forgot to take them, but they would also be quite uninteresting anyway.

Figure 7: Network cables running up to the attic

10

2.2 Patch Panel

Any network cable installed into a building needs to have the cable endpoints connected
to a patch panel. This allows for easy configuration and interconnection with inter-
changeable, devices, switches or routers. Figure 8 shows a patch panel I installed for
this purpose. It is a Trendnet TC-P16C6.

Figure 8: Patch panel

2.3 Power Over Ethernet Switch

The camera does not have easy access to power. Adding power circuits requires permits
and other expenses, so a solution that doesn’t require power upgrades is needed. Power
over ethernet turns out to be perfect for this project. This project uses a TP-LINK
TL-SG1008PE switch.

Figure 9: Power-over-ethernet (PoE) switch

A slightly more encompassing picture (figure 10) shows the switch and panel together.

11

https://www.trendnet.com/products/patch-panels/TC-P16C6
https://www.tp-link.com/us/products/details/cat-42_TL-SG1008PE.html
https://www.tp-link.com/us/products/details/cat-42_TL-SG1008PE.html

Figure 10: Fuller view of network closet

3 Camera

The camera, shown mounted in figure 11, is a Hikvision model DS-2CD2342WD-I (see
figure 12 for a view of the camera’s retail box). It uses PoE for both power and network
connectivity. It is plugged into a jack in the attic which is wired into the patch panel.
A short patch cable runs from the camera’s patch panel port to the switch.

Figure 11: Close up of mounted camera

12

The advantages of a wired PoE camera are a robust, stable network connection, and no
battery issues or high voltage power requirements.

Figure 12: EXIR Turret Network Camera retail box

3.1 Configuration

The camera was configured using the Safari web browser on a MacOS X (el capitan)
system. A series of image captures of the configuration screens where changes were made,
are shown. I won’t talk much about the details, they are here for documentation’s sake.

13

3.1.1 Camera System Settings

Figure 13: Basic camera system information for the camera

14

The camera uses an internal network NTP server located at 10.9.0.137 (the freebsd
zoneminder host). The Raspberry Pi display server is also using this NTP server, so
that all the systems involved have their times synchronized.

Figure 14: Camera system time and network time protocol (NTP) settings

15

Figure 15: Camera system daylight savings time (DST) settings

16

3.1.2 Camera System Security

The camera uses basic authentication, which is username and password based. I should
make sure that the connection is encrypted, but I don’t care, since the network is internal
only and is low risk. The username and password act to stop casual viewing of the
camera’s streams.

Figure 16: Camera system security authentication settings

We’ll also restrict the IP addresses that can talk to the camera. The listed ones are
the RPi, the FreeBSD server and a small pool of addresses used by miscellaneous other
computing devices in my home.

Figure 17: Camera system security IP address filter settings

17

3.1.3 Camera System User Management

The camera allows for the creation of separate users with differing privileges. In the spirit
of the best practice of minimizing permissions, I created two more users in addition to
the built-in admin user.

• An operator-privileged user named zoneminder was created for the ZoneMinder
software. This allows it to be able to read the live feed of the camera and to have
some other minor privileges, but does not have admin power.

• An non-privileged user named walleye was created for the RPi display software.
This allows it to only be able to read the live feed of the camera. It does not have
any admin power.

Figure 18: List of camera users showing walleye display user

Figure 19: List of online camera users

18

3.1.4 Camera Network Basic Settings

Currently the camera has a static IPv4 address of 10.9.0.88. It has no default gateway,
so as to limit, hopefully, any chatter to other systems on the network. I have not done
the work to prove this assertion.

I won’t be giving it an IPv6 address, since I want to severely limit its communication
options.

Figure 20: Camera network, basic IP settings

19

It is worthwhile to make a note of the ports involved in the camera’s communication
protocols. There seem to be higher numbered UDP ports involved in some parts of
the streaming behaviour of an RTSP connection. Some investigation of the RTP/RTSP
mechanisms is warranted.

Figure 21: Camera network, basic port settings

20

3.1.5 Camera Network Advanced Settings

There are a number of network protocols supported by the camera. I don’t need most
of them, so it is sensible to turn them off. Below, we disable the simple network man-
agement protocol (SNMP) as an example.

Figure 22: Camera network, advanced SNMP disabled settings

21

Under the HTTPS tab, I have enabled TLS, but the installed certificate is likely to
become useless at some point. I am unsure if I can change it very easily to one which I
sign with my own certificate authority.

Figure 23: Camera network, advanced HTTPS settings

22

3.1.6 Camera Video / Audio Settings

Most of these are the defaults and I have only a cursory knowledge of what they mean/do.

Figure 24: Camera Video settings

23

4 Raspberry Pi Live Display

The live display system uses an element14 brand, 7-inch, touchscreen display designed
specifically for the Raspberry Pi. It is compatible with models 3B, 2B and others. The
latest version of Raspbian works perfectly with the display.

A simple wireless keyboard is used for any typing needed, such as starting the display
software.

Figure 25: Element14 raspberry pi touchscreen display

24

Figure 26 shows what’s in the box. This illustration was borrowed from the element14
documentation.

Figure 26: Touchscreen display parts (picture attributed to element14 Community)

25

https://www.element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display
https://www.element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display

4.1 Process and Method for Use

The Pi and display combination is intended to be single purpose. It functions as a
display only, but may be used as an MQTT broker in the future.

The overall workflow / method of use is as follows:

• automatically boot into the Raspbian default desktop;

• manually start a terminal window;

• run, within that terminal, a loop-control shell script, which starts the software that
reads the camera’s stream and places it on the display.

Once the loop-control script starts, the display is overlaid with the omxplayer’s output,
which is the camera’s video feed. The entire display is used. Some important notes
about operating procedure:

• The screen saver function of the desktop environment must be set to blank screen
(basically, turn off the display’s backlight).

• The loop script must be started and the camera display is then active.

• When the screen saver kicks in and turns off the display, the live camera feed is no
longer visible and the screen is blank.

• To re-enable the display, a simple tap on the screen will disengage the screen saver
and the live display is shown. I have a small video of this action.

• The screen saver can also be disengaged by tapping a key on the wireless keyboard,
as well clicking the wireless mouse’s button.

After experimentation, it turns out that memory leaks are a concern if we run the
omxplayer for too long a time. This is why we created a loop-control script. The
result of running a loop script is that our live display is restarted every 10 minutes (can
be adjusted), and we avoid the eventual, observed laggy behaviour when running the
program for a long time. This lag is evidenced by a build up of UDP packets on the
program’s port queue (seen using the netstat command).

4.2 Configuration

The RPi was configured according to the display’s documentation found at element14’s
website 1. The hardware is shown in figure 26. It is useful to switch over to the website
briefly and review the installation instructions.

Currently the Pi has an IPv4 address of 10.9.0.104 given by a DHCP server. Arguably,
this should be changed to a static value, but the likely hood of another address being

1https://www.element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display

26

https://www.element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display
https://www.element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display

assigned is very low, plus we allow a few of the DHCP address pool to access the camera
via an IP filter.

The Pi uses an internal NTP server located at 10.9.0.137 (the freebsd zoneminder host).
The camera is also using this NTP server, so that all the systems involved have their
times synchronized.

4.3 OMXPlayer

The omxplayer software is used to fetch and display the camera’s real-time streaming
protocol’s (RTSP) feed. This video player was optimized for the raspberry pi and is very
fast in regards to video display.

Figuring out how to control the omxplayer was a challenge. It is designed to respond to
key presses sent via standard input (stdin), which is usually the keyboard.

Just leaving it running turned out to be problematic. Eventually, the software starts
queuing the incoming UDP packets and no longer properly displays the camera view.
The only fix to this is to regularly stop and restart the program.

Stopping the player requires having the letter ‘q’ sent to the stdin stream. Normally
this is done by hitting q on the keyboard. This is useless for automation. The Internet
provided the answer, which is to redirect omxplayer’s stdin to a first-in first-out (FIFO)
pipe file.

The creation of the fifo was done as follows, in the /home/pi/ folder:

pi@walleye ~: mkfifo omxcontrol

Since omxplayer can be told to listen for commands from the fifo file, key presses can
be sent to the fifo, such as ‘q’ or ‘p’, to control it. Sending a keypress is simple with the
‘echo’ program, and is shown in the scripts below.

A number of small shell scripts were created to control the display of the video feed. All
scripts are in a folder named /home/pi/omxbuttons/. This was the folder name I chose
when I was first started trying to figure out how to use omxplayer. There aren’t any
actual buttons.

27

4.3.1 loop control.sh

The loop-control script which runs in a loop forever.

#!/bin/sh

Loop to stop, start omxplayer

OMX_HOME=/home/pi/omxbuttons

while true

do

Create an instance of omxplayer listening to the stream

$OMX_HOME/omx.sh

sleep 10

Start it - basically, press the play key sequence

$OMX_HOME/start.sh

Let it run for 10 minutes and the restart

sleep 600

echo "Stopping..."

Stop it - send the quit key sequence

$OMX_HOME/q.sh

sleep 5

echo "Restarting..."

return to the top of the loop and recreate the omxplayer instance

done

Each of the three shell scripts called by the loop script have the following contents.

4.3.2 omx.sh

This script starts the omxplayer program with the required command line arguments.

#!/bin/sh

omxplayer --win "0 0 800 480" rtsp://walleye:password@10.9.0.88

< /home/pi/omxcontrol &

The --win option is used to place the image over the entire screen, starting at x position
0 (left) and extending 800 pixels (width), and y position 0 (top) extending 480 pixels
(height).

28

The next argument is the RTSP URL that determines the stream to be read. As dis-
cussed earlier, a low-privilege user named walleye was created for the RPi to have just a
live feed of the camera and to have no other privileges (see figure 18). This user is seen
in the streaming source parameter (rtsp URL). This means that the omx.sh file should
have restricted permissions to keep the password protected.

The command line clause “ < /home/pi/omxcontrol ” tells omxplayer to substitute the
named fifo as standard input, which means it will listen for key presses on that file-
like device. Characters that are written to the fifo will be read as key presses by the
omxplayer. This provides a means for automated control.

We put the omxplayer command in the background (as seen by the use of the ampersand,
&, at the end of the line), so that it continues to run after the omx.sh script exits, and
returns control to the loop script.

4.3.3 start.sh

This script sends a set of play command characters, 1 and 2, to the omxcontrol fifo,
which are picked up by the omxplayer executable, which then begins the live display of
the stream.

#!/bin/sh

echo -n 12 > /home/pi/omxcontrol

The -n argument tells echo not to include a newline in its output.

4.3.4 q.sh

This script sends a quit command character, q, to the omxcontrol fifo, which is picked
up by the omxplayer executable, which then exits.

#!/bin/sh

echo -n q > /home/pi/omxcontrol

29

5 ZoneMinder - FreeBSD Jail on VLAN

This section won’t really be covered unless there is time / interest. I’ll simply show the
zoneminder console and some captured videos.

The zoneminder software is dependency heavy and has many network services. It will
therefore be put into its own jail.

5.1 Jail Network Settings

We will use the VLAN 9 interface (vr0.9) as the jail’s network interface, with an IPv4
address of 10.9.0.80, effectively adding it to VLAN 9.

5.2 Host /etc/jail.conf Section

The host system’s /etc/jail.conf file is updated to add the following zoneminder jail
configuration section:

src {

path = /usr/home/jail/sourcecontrol;

mount.devfs;

host.hostname = src.palaceofretention.ca;

host.domainname = palaceofretention.ca;

ip4.addr = vr0.9|10.9.0.80;

ip4.addr += lo1|127.0.80.1;

ip6.addr = re0|fdea:667d:9747:1012::80;

exec.start = "/bin/sh /etc/rc";

exec.stop = "/bin/sh /etc/rc.shutdown";

}

Observe the network addresses:

root@nas:/usr/jails/zoneminder/etc # jail -c zoneminder

zoneminder: created

ELF ldconfig path: /lib /usr/lib /usr/lib/compat /usr/local/lib

32-bit compatibility ldconfig path: /usr/lib32

Setting hostname: zoneminder.palaceofretention.ca.

Creating and/or trimming log files.

Starting syslogd.

Clearing /tmp.

Updating motd:.

Starting cron.

Wed Oct 17 02:59:30 UTC 2018

30

root@nas:/usr/jails/zoneminder/etc # jexec zoneminder /bin/tcsh

root@zoneminder:/ # ifconfig

...

re0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=8209b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,

WOL_MAGIC,LINKSTATE>

ether 00:13:4b:0f:d6:b5

hwaddr 00:13:4b:0f:d6:b5

inet6 fdea:667d:9747:1012::80 prefixlen 128

nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>

media: Ethernet autoselect (1000baseT <full-duplex>)

status: active

vr0.9: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=80000<LINKSTATE>

ether 00:11:94:d8:83:ae

inet 10.9.0.80 netmask 0xffffffff broadcast 10.9.0.80

nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

media: Ethernet autoselect (100baseTX <full-duplex>)

status: active

vlan: 9 vlanpcp: 0 parent interface: vr0

groups: vlan

5.3 Jail /etc/rc.conf

The jail’s system rc file is required to signal what services are enabled in the jail.

Keep tmp tidy by emptying on startup

clear_tmp_enable="YES"

do not open any network sockets for syslgod

syslogd_flags="-ss"

leave sendmail off

sendmail_enable="NONE"

do not start the DNS caching server

local_unbound_enable="NO"

hostname="zoneminder.palaceofretention.ca"

zoneminder related services

nginx_enable="YES"

31

php_fpm_enable="YES"

Required for zoneminder (also uses nginx)

mysql_enable="YES"

mysql_server_enable="YES"

mysql_dbdir="/var/db/mysql"

fcgiwrap_enable="YES"

fcgiwrap_user="www"

fcgiwrap_socket_owner="www"

fcgiwrap_flags="-c 4"

zoneminder_enable="YES"

5.4 ZoneMinder Jail Installation

This section documents installing the zoneminder system into the jail. We had a previous
non-jailed instance of zoneminder and we can copy over the mysql databases for reuse.

Now that we have an upgraded jail (as of FreeBSD 11.2-p4), we’ll use packages:

root@zoneminder:/usr/local/www # pkg install zoneminder-h264

Updating FreeBSD repository catalogue...

FreeBSD repository is up to date.

All repositories are up to date.

The following 132 package(s) will be affected (of 0 checked):

Proceed with this action? [y/N]: y

...

Message from zoneminder-h264-1.30.20170222_7:

ZoneMinder is a free, open source Closed-circuit television software

application developed for Unix-like operating systems which supports

IP, USB and Analog cameras.

New installs

============

ZoneMinder requires a MySQL (or MySQL forks) database backend and

a http server, capable to execute PHP and CGI scripts.

To simplify things, we assume, that you use MySQL and NGINX on

the same server.

1. Preliminary steps

32

1.1 Install databases/mysql56-server or newer

You may choose your favourite method - ports or packages here.

FreeBSD default setting use STRICT_TRANS_TABLES sql_mode.

It’s mandatory to disable it. Edit your my.cnf accordingly

The following SQL mode should be compatible with ZM:

sql_mode= NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION

ZoneMinder use very simple queries, however it tends to write to

the database quite a lot depending on your capture mode and number

of cameras. So tweak your MySQL instance accordantly

Now, enable and start MySQL

sysrc mysql_server_enable="YES"

service mysql-server start

1.2 Install www/nginx

We provide an example for an HTTP install, however, you should use

HTTPS if you plan to expose your installation to the public. There

are plenty guides how to do it and security/letsencrypt.sh is a

good way to get a valid SSL certificate.

Your server block should include the following:

server {

root /usr/local/www/zoneminder;

try_files $uri $uri/ /index.php$is_args$args;

index index.php;

location = /cgi-bin/nph-zms {

include fastcgi_params;

fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

fastcgi_pass unix:/var/run/fcgiwrap/fcgiwrap.sock;

}

location ~ \.php$ {

include fastcgi_params;

fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

fastcgi_pass unix:/var/run/php-fpm.sock;

}

location /api {

33

rewrite ^/api/(.+)$ /api/index.php?p=$1 last;

}

}

1.2.1 ZoneMinder has it’s own authentication system, however it’s recommend

to use NGINX basic auth over HTTPS if you don’t need fine grain

control to ZoneMinder components.

1.2.2 If you choose ZoneMinder authentication, it’s recommended to prohibit

access to image and events folder as it’s possible to guess file names

inside it.

location ~ ^/(?:images|events)/ {

deny all;

}

Enable and start NGINX

sysrc nginx_enable="YES"

service nginx start

1.3 Install www/fcgiwrap

As NGINX lacks it’s own CGI wrapper, we need external one. Please

note that ZoneMinder’s montage page use simultaneous access to all

cameras, so you need to use at least as many fcgiwrap workers as

your number of cameras. The following example assumes you have 4.

Enable and start FcgiWrap

sysrc fcgiwrap_enable="YES"

sysrc fcgiwrap_user="www"

sysrc fcgiwrap_socket_owner="www"

sysrc fcgiwrap_flags="-c 4"

1.4 PHP is installed as a dependency to ZoneMinder. However, you should

tweak some of it’s settings.

Edit /usr/local/etc/php-fpm.conf and set

listen = /var/run/php-fpm.sock

listen.owner = www

listen.group = www

env[PATH] = /usr/local/bin:/usr/bin:/bin

If you want to set another path for the socket file, make sure you

change it in your NGINX config well. The env[PATH] needs to be set

to locate the zip utility as ZoneMinder’s export functions rely on

34

exec(). Sorry, chroot folks.

PHP throws warning if date.timezone option is not set. The best place

to do it is to create new ini file in /usr/local/etc/php with overrides

date.timezone = "UTC"

Enable and start php-fpm

sysrc php_fpm_enable="YES"

service php-fpm start

1.5 ZoneMinder constantly keeps the last N frames from its cameras to

preserve them when alarm occurs. This can be a performance hog if

placed on spindle drive. The best practice is put it on tmpfs.

See https://www.freebsd.org/cgi/man.cgi?query=tmpfs for more

information.

ZoneMinder will use /tmp for default. If you plan to change it, see

ZM_PATH_MAP setting.

Mapping /tmp to tmpfs is actually a recommended step under FreeBSD.

Edit /etc/fstab and add the following:

tmpfs /tmp tmpfs rw,nosuid,mode=0177700

The size of temporary files depends on your number of cameras

number and frames you plan to keep. My 12 3Mbit cameras with 25

last frames consumes 6 GB.

2. ZoneMinder installation

Connect to MySQL under root and create zm user and populate database.

mysql -u root -p

CREATE DATABASE zm;

GRANT ALL PRIVILEGES ON zm.* TO ’zmuser’@’localhost’ IDENTIFIED BY ’zmpass’;

FLUSH PRIVILEGES;

quit;

mysql -u root -p zm < /usr/local/share/zoneminder/db/zm_create.sql

2.1 If you have chosen to change the ZoneMinder MySQL credentials to something

other than zmuser/zmpass then you must now edit /usr/local/etc/zm.conf. Change

35

ZM_DB_USER and ZM_DB_PASS to the values you created in the previous step.

Enable and start ZoneMinder

sysrc zoneminder_enable="YES"

service zoneminder start

Upgrades

========

1. Stop ZoneMinder

service zoneminder stop

2. Upgrade database

sudo -u www zmupdate.pl

3. Start ZoneMinder

service zoneminder start

36

	Tools and Structure
	Mounted Camera
	Live Display

	Network
	Network Cables
	Patch Panel
	Power Over Ethernet Switch

	Camera
	Configuration
	Camera System Settings
	Camera System Security
	Camera System User Management
	Camera Network Basic Settings
	Camera Network Advanced Settings
	Camera Video / Audio Settings

	Raspberry Pi Live Display
	Process and Method for Use
	Configuration
	OMXPlayer
	loop_control.sh
	omx.sh
	start.sh
	q.sh

	ZoneMinder - FreeBSD Jail on VLAN
	Jail Network Settings
	Host /etc/jail.conf Section
	Jail /etc/rc.conf
	ZoneMinder Jail Installation

