
Using Let’s Encrypt As A Certificate
Authority on a Raspberry Pi

Mark G.

Mar. 23, 2019

A demonstration is presented on how to provide a web server with a cer-
tificate, for Transport Layer Security (TLS), using Let’s Encrypt as a Cer-
tificate Authority (CA). The demo uses a Raspberry Pi 3B (RPi) running
the Raspbian operating system. The web server used is Apache. The server
has a static IP version 4 address and a domain name system (DNS) name
of www.palaceofretention.ca. A configuration from scratch will be described,
allowing the reader to learn how to initially setup their system in a secure
manner.

Note that the securing of Apache beyond the encrypted transmission of
web pages is not provided. Once an arbitrary web framework, such as PHP
or Django, is installed the securing of the web server takes on a much larger
dimension. In those cases, it is vital to keep up with security patches and
minimize the installed or enabled functionality of said frameworks. Permis-
sions on files and databases must be set to “need to know only” style of
implementation, that is, only the least privilege required should be used.
Therefore, a web server must be run as an unprivileged user, the database
user used by the web server should be restricted to its own database entries
and must be unprivileged as well. There is much more that can be done to
tighten up security.

Note also that allowing the certbot software to run as a root user is not
ideal. The system administrator should migrate to using the DNS-01 method,
rather than the HTTP-01 method described herein, as soon as feasible. The
DNS-01 method allows for the use of an unprivileged user to manage inbound
certificates, with strict controls on what said user can write to the DNS
database.

1

Contents

1 Introduction 4

2 Operating System 4
2.1 Changing Password for User pi . 4
2.2 Changing Password for User root . 5
2.3 “Wi-Fi is disabled” Message . 5
2.4 Hostname . 6

3 Conventions / Working Practices 7
3.1 Command Line Convenience . 7
3.2 Be the root User (Trust In Yourself) . 7
3.3 Command Aliases for the root User (Your Trust is Misplaced) 7

4 Network 8
4.1 Addressing and Interfaces . 8

4.1.1 Special Case MAC Reservation . 8
4.1.2 The Systemd Way To Set The MAC 9
4.1.3 The Wrong Way To Set The MAC 10

4.2 Disable Unneeded Services . 11
4.3 Firewall (iptables) . 12
4.4 Firewall Policies . 12

4.4.1 iptables-persistent . 13
4.4.2 Updated IPv4 Rules . 15

4.5 Plug in the Network Cable . 16
4.6 Secure Shell (SSH) . 16

4.6.1 Policies . 16
4.6.2 Startup . 17
4.6.3 Public / Private Key Authentication 18

4.7 SSH Client Config File Convenience . 21

5 Updating and Upgrading 21

6 Apache Web Server 22
6.1 Initial Configuration Settings . 24
6.2 Test HTML File . 24
6.3 Starting and Testing Apache . 26

7 Certbot 26
7.1 ACME Protocol . 28

7.1.1 HTTP Challenge . 28
7.1.2 DNS Challenge . 29

2

7.2 Location of Files . 29
7.2.1 Certificates . 29
7.2.2 Systemd files . 29

7.3 Required Credentials . 29
7.3.1 Email Address: letsencrypt@palacofretention.ca 29
7.3.2 Let’s Encrypt Account Authorized Key Pair 30
7.3.3 Registration . 30

7.4 Staging . 30
7.5 Production . 34
7.6 Automatic Renewal . 36

7.6.1 Post Renewal Hook . 38
7.7 Backup of letsencrypt Directory . 38

8 Optional: CAA Record in DNS 39

3

1 Introduction

There are several moving parts in this deployment. The subsystems needed are:

1. A platform (RPi) and operating system (OS) Raspbian Stretch Lite (or later).

2. An internet connection that provides for incoming connections and has a named
IP address controllable by us.

3. A firewall (iptables).

4. A management interface using the secure shell (SSH).

5. A web server (Apache 2.x).

6. The Certbot software and some registration information.

7. Certbot apache plugin to automate the apache TLS configuration.

2 Operating System

The operating system is Raspbian Stretch Lite1. We use the lite version because the
system has only server roles. That is, no desktop environment is needed to operate the
web server. This is typical for a web server and it keeps system updates small. This
reduction in installed software also reduces the attack surface of the system.

To get started, the OS must be written to a microSD card and booted for the first
time. There is a great set of instructions on how to do this at the raspberry pi installing
operating system images web page2.

We will initially boot the system with a monitor, keyboard and mouse connected. The
network will not be connected initially. This will allow us to configure the network
interfaces, management services and firewall before attaching to the network. Once the
network and SSH are running properly, we can remove the monitor, keyboard and mouse.
Further configuration can then use our SSH management interface.

2.1 Changing Password for User pi

The system will start and display a command line login prompt. Enter user pi, fol-
lowed by pressing ENTER, then type password raspberry, also followed by ENTER.
Immediately type the passwd command, enter the current password of raspberry and
then create a new strong password for the pi user. Enter it twice and keep a record of
it.

1https://www.raspberrypi.org/downloads/raspbian/
2https://www.raspberrypi.org/documentation/installation/installing-images/README.md

4

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

pi@raspberrypi:~ $ passwd

Changing password for pi.

(current) UNIX password:

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

2.2 Changing Password for User root

Since we are logged in as the pi user, which has sudo rights, we will become the root

user in order to reset its password.

pi@raspberrypi:~ $ sudo su -

Wi-Fi is disabled because the country is not set.

Use raspi-config to set the country before use.

root@raspberrypi:~# passwd

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

‘sudo su -’ calls the su command with a single dash, which forces the root user’s envi-
ronment to be created, rather than using the pi user’s environment, which would be a
security risk. One risk is altering executable path searches, wherein, for example, the pi

user’s search path may contain a ˜/bin entry at the front with commands named ls or
similar. This could override the system ls command and execute arbitrary code.

2.3 “Wi-Fi is disabled” Message

The Wi-Fi is disabled message is annoying, but setting the Wi-Fi country in raspi-config

failed with a wpa supplicant error. We’ll put an entry directly into the wpa supplicant.conf
file and hope this gets rid of the message.

pi@www:~ $ sudo more /etc/wpa_supplicant/wpa_supplicant.conf

country=CA

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

5

2.4 Hostname

We refer to the debian documentation3 on how to set the hostname. We can use the
hostname command to view the current value:

pi@raspberrypi:~ $ hostname

raspberrypi

To set the host name using a systemd compatible method, the hostnamectl command is
used, with a subcommand set-hostname, and the fully qualified domain name (FQDN)
of the system.

pi@raspberrypi:~ $ hostnamectl set-hostname www.palaceofretention.ca

==== AUTHENTICATING FOR org.freedesktop.hostname1.set-static-hostname ===

Authentication is required to set the statically configured local host name,

as well as the pretty host name.

Authenticating as: root

Password:

==== AUTHENTICATION COMPLETE ===

Review our change:

pi@raspberrypi:~ $ hostname

www.palaceofretention.ca

Add an entry to the /etc/hosts file for our new name. We know what our IP address
will be, so we enter that now. We also comment out the old raspberrypi entry (note
that we needed to logout/login to reset the prompt to show the new hostname).

pi@www:~ $ sudo vi /etc/hosts

pi@www:~ $ more /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

#127.0.1.1 raspberrypi

192.168.60.130 www.palaceofretention.ca

192.168.60.130 palaceofretention.ca

Obviously, you should use your own IP address and hostname in the above instruc-
tions.

3https://wiki.debian.org/HowTo/ChangeHostname

6

https://wiki.debian.org/HowTo/ChangeHostname

3 Conventions / Working Practices

This section lists a couple of conventions or working practices that are used during the
installation and configuration processes.

3.1 Command Line Convenience

A great time saver for the command line is to map your UP and DOWN arrow keys
to search through your command history. This functionality is the default in FreeBSD’s
tcsh, but is sadly, not equipped in the bash shell. To enable it, we add these two lines
to the ˜/.bashrc file.

bind ’"\e[A":history-search-backward’

bind ’"\e[B":history-search-forward’

Do this for all the users (pi and root alike). You can thank me later.

3.2 Be the root User (Trust In Yourself)

To reduce the number of times sudo must be typed, we will simply operate as the root
user for most of the session.

pi@www:~ $ sudo su -

root@www:~#

The su - mechanic was explained in the “Changing the root user’s password” sec-
tion.

3.3 Command Aliases for the root User (Your Trust is Misplaced)

Since we will make mistakes, it is prudent to create aliases for the rm, cp, and mv

commands. Happily, the root user’s .bashrc file has these command aliases pre-defined
and we need only uncomment them. Edit the /root/.bashrc file and modify the
entries at the end of the file.

Change:

Some more alias to avoid making mistakes:

alias rm=’rm -i’

alias cp=’cp -i’

alias mv=’mv -i’

To:

7

Some more alias to avoid making mistakes:

alias rm=’rm -i’

alias cp=’cp -i’

alias mv=’mv -i’

Exit your bash session, restart it and observe your new aliases.

root@www:~# logout

pi@www:~ $ sudo su -

root@www:~# alias

alias cp=’cp -i’

alias mv=’mv -i’

alias rm=’rm -i’

Now whenever you use a command that can remove or overwrite a file, you will be asked
to confirm the change.

root@www:~# touch foo

root@www:~# rm foo

rm: remove regular empty file ’foo’? y

4 Network

Having reset passwords and setup our environment, we can begin to configure the net-
work. We want to keep networking simple and minimal.

4.1 Addressing and Interfaces

In almost all cases, you want a web server to have a static, i.e. unchanging, IP address.
The best way to do this is to have the dynamic host configuration protocol (DHCP)
server reserve an IP address for a specific client base on a unique ID. Most home routers
will allow this action via their management interfaces. The web server system’s network
interface’s, media access control (MAC) address is often used as the ID.

We will allow DHCP to give us our network parameters, such as DNS entries and default
gateway, so no other configuration is necessary in regards to IP addresses or routing. In
the case of IP version 6, a similar mechanism must be used for the server’s static IPv6
address (not covered here).

4.1.1 Special Case MAC Reservation

In my case, I must set a certain media access control (MAC) address for my ethernet
port. This is because the DHCP server that I connect to has a client ID, or reservation,

8

for a specific MAC address. This client ID was put in place in the past and instead of
having to contact the ISP and change this reservation, we simply set the MAC address
explicitly on the interface to match our ISP’s expected reservation. You DO NOT NEED
to do this step on your RPi.

4.1.2 The Systemd Way To Set The MAC

The systemd ecosystem has a method for configuring link parameters on network inter-
faces. Such parameters include the MAC address.

The ip link command will show current MAC addresses, also known as the link ad-
dress.

pi@www:/etc/network $ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP mode DEFAULT group default qlen 1000

link/ether b8:27:eb:80:bf:50 brd ff:ff:ff:ff:ff:ff

3: wlan0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast

state DOWN mode DORMANT group default qlen 1000

link/ether b8:27:eb:d5:ea:05 brd ff:ff:ff:ff:ff:ff

We see eth0 has a default address of b8:27:eb:80:bf:50. We will change this to 00:3b:61:a7:d7:2a
(not real) so as to match our ISP’s expected reservation.

We must create a 00-default.link file within the /etc/systemd/network/ directory. It
contains the following:

[Match]

OriginalName=eth0

[Link]

MACAddress=00:3b:61:a7:d7:2a

The above Match section contains the requirements that must match in order for the
Link section statements to be implemented or set. We match on the original kernel name
(OriginalName=eth0) for the device, knowing that these can be unstable, but with only
one ethernet interface on the RPi, this instability shouldn’t affect us.

Therefore, the eth0 interface will get assigned the MAC address specified in the Link

section. After a reboot we see the new MAC address on the interface:

root@mail:~# ip link show eth0

9

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:3b:61:a7:d7:2a brd ff:ff:ff:ff:ff:ff

4.1.3 The Wrong Way To Set The MAC

I leave this section in the document so that others may learn that the following method
cannot be used reliably.

A deprecated reference for setting MAC addresses using the Debian Distribution is
at Working With MAC Addresses4. The use of /etc/network/interfaces file and the
hwaddress command may not be the best way to do this, but it was the simplest way
that initially worked.

It only worked for a short time, though. After the DHCP lease expired, errors like the
following showed up:

ssh: connect to host 192.168.60.130 port 22443: Operation timed out

mv@nas:~ % ssh wwwpor

ssh: connect to host 192.168.60.130 port 22443: No route to host

mv@nas:~ %

The web server also failed to respond to requests, and in fact there was no network
connectivity whatsoever.

The interfaces still claimed to be UP and have an IP address and the routing table still
had its default route, the network was just dead.

So using the following method does not function correctly.

pi@www:~ $ more /etc/network/interfaces

interfaces(5) file used by ifup(8) and ifdown(8)

auto eth0

iface eth0 inet dhcp

hwaddress ether 00:3b:61:a7:d7:2a

The above configures the eth0 interface to start at boot (auto). The iface command
specifies that eth0 will use DHCP for internet protocol 4 addressing, and to set the
MAC address of the interface to the value specified. Note that this will make the DHCP
client daemon (dhcpcd) complain.

It turns out we couldn’t ignore the complaints and had to use the systemd mechanisms
to set the MAC address.

4https://debian-administration.org/article/501/Working with MAC addresses

10

https://debian-administration.org/article/501/Working_with_MAC_addresses

4.2 Disable Unneeded Services

A very secure system listens on no network ports. So we must turn off all network
services that listen on ports we don’t use or need. We need world wide web (80 and
443), DHCP (68), and SSH ports, and no others at this point. We must determine what
other system processes may be listening on network ports and stop them.

There is a useful tool for listing processes and their open files, which also happens to list
processes that are listening on network ports. It is called lsof (list open files).

root@www:~# apt-get install lsof

Reading package lists... Done

Building dependency tree

Reading state information... Done

lsof is already the newest version (4.89+dfsg-0.1).

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

We can now use the command to show the processes listening on network ports for IPv4
(-i4 parameter) and IPv6 (-i6 parameter).

root@www:~# lsof -i4 -i6

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

avahi-dae 329 avahi 12u IPv4 11474 0t0 UDP *:mdns

avahi-dae 329 avahi 13u IPv6 11475 0t0 UDP *:mdns

avahi-dae 329 avahi 14u IPv4 11476 0t0 UDP *:32808

avahi-dae 329 avahi 15u IPv6 11477 0t0 UDP *:49322

dhclient 463 root 6u IPv4 10585 0t0 UDP *:bootpc

sshd 531 root 3u IPv4 12605 0t0 TCP *:2443 (LISTEN)

sshd 531 root 4u IPv6 12607 0t0 TCP *:2443 (LISTEN)

We will use the systemctl command to disable, mask and stop the avahi-daemon,
since it is not needed on a web server.

Disable it:

root@www:~# systemctl disable avahi-daemon.socket avahi-daemon.service

Synchronizing state of avahi-daemon.service with SysV service script

with /lib/systemd/systemd-sysv-install.

Executing: /lib/systemd/systemd-sysv-install disable avahi-daemon

Removed /etc/systemd/system/dbus-org.freedesktop.Avahi.service.

Removed /etc/systemd/system/sockets.target.wants/avahi-daemon.socket.

Mask it from being started by some unknown dependency:

root@www:~# systemctl mask avahi-daemon.socket avahi-daemon.service

Created symlink /etc/systemd/system/avahi-daemon.socket /dev/null.

11

Created symlink /etc/systemd/system/avahi-daemon.service /dev/null.

Finally, stop it:

root@www:~# systemctl stop avahi-daemon.socket avahi-daemon.service

Check that it’s no longer active on the network:

root@www:~# netstat -an46

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:2443 0.0.0.0:* LISTEN

tcp6 0 0 :::2443 :::* LISTEN

root@www:~# lsof -i4 -i6

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

sshd 555 root 3u IPv4 12584 0t0 TCP *:2443 (LISTEN)

sshd 555 root 4u IPv6 12586 0t0 TCP *:2443 (LISTEN)

There may be other services that need to be disabled, so look carefully and don’t assume
that the above service was the only one that was listening.

4.3 Firewall (iptables)

A basic set of rules are needed for the system. These rules must be loaded at system
startup and are policy based.

4.4 Firewall Policies

The policies we wish to enforce are as follows:

1. Block all incoming connections except those we explicitly allow.

2. Do not allow forwarding (we are not a router).

3. Allow outgoing connections originating on the server.

Optionally, we could block output by default and restrict outgoing traffic to ports
needed for our services, maintenance and updates (both certificates and software).
We would have to be careful to add rules for other outgoing packets, such as DHCP
and possibly others.

4. Allow all the loopback device’s packets to move freely.

5. Allow DHCP packets to pass between the DHCP server and our client.

12

6. Allow incoming web server requests on standard ports 80 and 443.

7. Allow incoming SSH requests on our non-standard port.

8. Optionally, immediately reject connections on port 22.

9. Allow incoming packets that are part of established connections (stateful).

4.4.1 iptables-persistent

There exists a package called iptables-persistent that is very helpful for making the
iptables rulesets load at system startup. We install it:

root@www~# apt-get install iptables-persistent

During installation two textbox pop-ups are sent asking whether to store IPv4 and IPv6
rules in the following two files:

• /etc/iptables/rules.v4 - the internet protocol version 4 rules, and;

• /etc/iptables/rules.v6 - the internet protocol version 6 rules.

We answered yes to both and the two files were created for us.

To control the service use the following service commands:

root@www:/etc# service netfilter-persistent save

root@www:/etc# service netfilter-persistent stop

root@www:/etc# service netfilter-persistent start

We edit the rules.v4 file and makes changes to implement the policies we listed above.
Note these rules are modified later on, so this set remains only to match the explanatory
text which follows them.

*filter

:INPUT DROP [1:76]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [1:76]

-A INPUT -i lo -j ACCEPT

-A INPUT -s 192.168.0.0/16 -p udp -m udp --dport 68 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 80 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 443 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 22443 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 22 -j REJECT

-A INPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

COMMIT

These rules have the following meanings:

13

*filter start the definitions for iptables’ internal filter table.

:INPUT DROP [1:76] default to dropping packets for the input chain.

:FORWARD DROP [0:0] default to dropping packets for the forward chain.

:OUTPUT ACCEPT [1:76] default to accepting all packets on the output chain. This
applies to the loopback interface as well as the ethernet interface. It allows con-
nections originating from our server to go out to the Internet. It also allows our
web and ssh servers to return their answers/responses to traffic from the outside
world.

-A INPUT -i lo -j ACCEPT allow incoming traffic to the loopback interface.

-A INPUT -s 192.168.0.0/16 -p udp -m udp –dport 68 -j ACCEPT allow packets with
a source address of our DHCP server, or its subnet, to send us DHCP packets. Our
outgoing packets originate from UDP port 68 and are sent to port 67 on the server.
These packets are allowed by the default output policy of accept. The server re-
sponse packets come from port 67 and are sent to port 68 and are allowed by this
rule. In a home router case, the source address would be the address of the router
itself, which is likely to be of the form 192.168.1.1 or similar. This rules uses a
CIDR subnet specification as a source address because I cannot guarantee which
host will act as the DHCP server on the ISP’s network side.

-A INPUT -p tcp -m tcp –dport 80 -j ACCEPT allow incoming requests on port 80
for our web server.

-A INPUT -p tcp -m tcp –dport 443 -j ACCEPT allow incoming requests on port 443
for our web server.

-A INPUT -p tcp -m tcp –dport 22443 -j ACCEPT allow incoming requests on port
22443 for our SSH server.

-A INPUT -p tcp -m tcp –dport 22 -j REJECT immediately reject connection requests
to port 22.

-A INPUT -p icmp -m icmp –icmp-type 8 -j ACCEPT allow the ICMP ping command
on our server.

-A INPUT -m state –state RELATED,ESTABLISHED -j ACCEPT allow incoming re-
quests that match an established or related connection that previously originated
from our system. It’s possible that this would allow server DHCP responses to be
allowed, but it’s best to be explicit, as above, in some cases.

COMMIT activate the rules.

The rules are loaded on system boot using systemd’s startup mechanisms. The iptables-persistent
package created the proper systemd unit files for systemd integration.

We edit the rules.v6 file and makes changes to implement blocking of all IPv6 packets,
since we don’t have IPv6 connectivity.

14

root@www:/etc# more /etc/iptables/rules.v6

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -j REJECT --reject-with icmp6-port-unreachable

-A FORWARD -j REJECT --reject-with icmp6-port-unreachable

-A OUTPUT -j REJECT --reject-with icmp6-port-unreachable

COMMIT

4.4.2 Updated IPv4 Rules

The following contains an updated list of rules that are a little more useful, but have
the same spirit as the original set:

root@www:/etc# more iptables/rules.v4

Generated by iptables-save v1.6.0 on Sun Mar 24 23:26:47 2019

*filter

:INPUT DROP [7:296]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -i lo -j ACCEPT

-A INPUT -s 127.0.0.0/8 ! -i lo -j REJECT --reject-with icmp-port-unreachable

-A INPUT -s 192.168.60.0/24 -p udp -m udp --dport 68 -j ACCEPT

-A INPUT -i eth0 -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 80 -j ACCEPT

-A INPUT -i eth0 -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 443 -j ACCEPT

-A INPUT -i eth0 -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 2443 -j ACCEPT

-A INPUT -i eth0 -p udp -m state --state ESTABLISHED -m udp --sport 53 -j ACCEPT

-A INPUT -i eth0 -p tcp -m state --state ESTABLISHED -m tcp --sport 53 -j ACCEPT

-A INPUT -i eth0 -p udp -m state --state ESTABLISHED -m udp --sport 123 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 22 -j REJECT --reject-with icmp-port-unreachable

-A INPUT -p icmp -m state --state NEW -m icmp --icmp-type 8 -j ACCEPT

-A INPUT -p icmp -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -m limit --limit 3/min -j LOG --log-prefix "iptables_INPUT_denied: "

-A FORWARD -m limit --limit 3/min -j LOG --log-prefix "iptables_FORWARD_denied: "

-A OUTPUT -o lo -j ACCEPT

-A OUTPUT -o eth0 -p tcp -m state --state ESTABLISHED -m tcp --sport 80 -j ACCEPT

-A OUTPUT -o eth0 -p tcp -m state --state ESTABLISHED -m tcp --sport 443 -j ACCEPT

-A OUTPUT -o eth0 -p tcp -m state --state ESTABLISHED -m tcp --sport 2443 -j ACCEPT

-A OUTPUT -o eth0 -p udp -m state --state NEW,ESTABLISHED -m udp --dport 53 -j ACCEPT

15

-A OUTPUT -o eth0 -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 53 -j ACCEPT

-A OUTPUT -o eth0 -p udp -m state --state NEW,ESTABLISHED -m udp --dport 123 -j ACCEPT

-A OUTPUT -p icmp -j ACCEPT

-A OUTPUT -m limit --limit 3/min -j LOG --log-prefix "iptables_OUTPUT: "

COMMIT

Completed on Sun Mar 24 23:26:47 2019

Additions include:

• some logging (-j LOG) statements;

• more explicit input chain state statements, and;

• more explicit output chain statements.

4.5 Plug in the Network Cable

A subsection is dedicated to this action so as to stress the order in which events should
occur when connecting directly to the Internet. The network is connected only when we
are sure that passwords have been changed, the firewall is running and network services
are reduced to a minimum.

Ideally, the system will be configured on a private network prior to deployment.

In many cases, your system will be behind a network address translating (NAT) router
and not directly connected to the Internet. This NAT layer affords a modicum of pro-
tection, since most routers won’t forward incoming connection requests to hosts on the
local area network, unless told to. Being disconnected is still a good habit to learn, but
is not as urgent in this case. You will also need to create port forwarding rules in your
NATing router to redirect both SSH and web server traffic to your RPi.

4.6 Secure Shell (SSH)

The secure shell protocol will act as our management interface, allowing us command
line control of the server over the network. The SSH connection will also be used to
transfer HTML files, as needed, using either scp or sftp based software.

4.6.1 Policies

We need to configure the SSH server to follow these policies:

1. Listen on a non-standard port to ignore most robotic attackers and keep our logs
cleaner.

2. Disallow root login over SSH entirely. We always login as an unprivileged user and
switch to the root user, or use sudo as needed.

16

3. Require public/private keys for login, that is, no password based logins allowed.
Obviously, we must initially allow passwords until we setup our key pairs and
transfer the public portion to the pi user’s authorized keys file.

The configuration file for the ssh daemon has a path of /etc/ssh/sshd config. We edit it
and make sure the following configuration options are specified so as to implement our
policy. The ellipses indicate other options that are not shown and unchanged from their
defaults.

Port 22443

...

PermitRootLogin no

...

The key based login policy will be implemented after we have created and transferred
the required public and private key pairs.

4.6.2 Startup

The easiest way to enable SSH at system startup, on Raspbian, is to create an empty
file named ssh in the /boot directory and reboot the system.

root@www:~# cd /boot

root@www:/boot# touch ssh

root@www:/boot# reboot

After the reboot, SSH will be started:

root@www:~# netstat -an46

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:22443 0.0.0.0:* LISTEN

tcp6 0 0 :::22443 :::* LISTEN

We can also see its status:

root@www:~# service ssh status

ssh.service - OpenBSD Secure Shell server

Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled)

Active: active (running) since Thu 2019-03-21 05:49:55 GMT; 45min ago

Process: 444 ExecStartPre=/usr/sbin/sshd -t (code=exited, status=0/SUCCESS)

Main PID: 447 (sshd)

CGroup: /system.slice/ssh.service

447 /usr/sbin/sshd -D

17

Mar 21 05:49:55 raspberrypi systemd[1]: Starting OpenBSD Secure Shell server...

Mar 21 05:49:55 raspberrypi sshd[447]: Server listening on 0.0.0.0 port 22443.

Mar 21 05:49:55 raspberrypi sshd[447]: Server listening on :: port 22443.

Mar 21 05:49:55 raspberrypi systemd[1]: Started OpenBSD Secure Shell server.

4.6.3 Public / Private Key Authentication

The use of public / private key pairs is the best way to connect to the SSH management
interface. It completely defeats password attacks on the SSH server and, provided that
the private key files are suitably protected by a passphrase, is very secure.

Key pairs are generated on a system which is intended to connect to the RPi so as to
manage it. In my case it would be my macbook laptop, or my FreeBSD workstation. In
either case, we refer to that system as the management workstation. You can use the
same key pair on many different systems, or have a public/private key pair specific to
each system from which you plan to connect to the RPi. Using a separate key pair for
each connecting device is preferred and allows the cancellation of only that key in the
case that its private key is lost or stolen.

You can also carry your SSH keys on a USB stick if you are very brave.

Use ssh-keygen on Unix or MacOS systems to create a key pair. The PuTTy program
on Microsoft platforms can also be used, but won’t be covered here. The next set of
commands are run in a terminal on the management workstation.

One always protects a private key with a passphrase, so enter a strong one when
prompted below.

[fruit:~] student% ssh-keygen -C for_rpi_www.por.ca -f ~/.ssh/for_rpi_www.por.ca

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in for_rpi_www.por.ca.

Your public key has been saved in for_rpi_www.por.ca.pub.

In the above command the -C argument adds a comment to the public key to help in
identifying it later. The -f argument specifies the file name for the private key. Here
we store it in the .ssh folder, found in the management user’s home directory. We give
it a meaningful name so as to distinguish it from other keys in the .ssh directory. The
public key will be named the same, but have a .pub extension. It is the public key we
copy to the RPi server.

Copy the public key to the RPi while we still allow password logins:

[fruit:~] student% cat ~/.ssh/for_rpi_www.por.ca.pub | ssh pi@192.168.60.130 \

’umask 0077; mkdir -p .ssh; cat >> .ssh/authorized_keys && echo "Key copied"’

18

ssh: connect to host 192.168.60.130 port 22: Connection refused

Of course, we’ve changed the port, so we must specify it in the ssh command.

[fruit:~] student% cat ~/.ssh/for_rpi_www.por.ca.pub | \

ssh -p 22443 pi@192.168.60.130 \

’umask 0077; mkdir -p .ssh; cat >> .ssh/authorized_keys && echo "Key copied"’

The authenticity of host ’[192.168.60.130]:22443 ([192.168.60.130]:22443)’

can’t be established.

ECDSA key fingerprint is SHA256:GsXT3CFc+e52+zGSs+10nsLWJaMKisFtSMt6i+OyKG8.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’[192.168.60.130]:22443’ (ECDSA) to the list of

known hosts.

pi@192.168.60.130’s password:

Key copied

We decompose the above command:

cat ˜/.ssh/for rpi www.por.ca.pub send the contents of the public key file to standard
output.

| take standard output and pipe it to the next command (ssh).

ssh -p 22443 pi@192.168.60.130 use the ssh command to connect to port 22443 of our
RPi host at the given IP address using the username pi.

’umask 0077; mkdir -p .ssh; cat >> .ssh/authorized keys && echo ”Key copied”’ the
command that ssh will execute on the remote system.

This is a compound command that has four parts and must be entirely enclosed in
single quotes. The first three commands are separated by semi-colons, while the
fourth is separated by a double ampersand. The semi-colon allows the separate
commands to be executed one after the other regardless of success or failure. For
example, the .ssh directory may already exist and mkdir will exit with an error that
we don’t care about. The double ampersand will only allow the next command to
execute if the preceding command was successful.

umask 0077 temporarily set the file creation bits to remove group and world per-
missions for any new files or directories created.

mkdir -p .ssh in the pi user’s home directory, create the .ssh directory if it doesn’t
exist, using the umask previously set.

cat >> .ssh/authorized keys take the standard input that was sent to the ssh

command and concatenate it to the file named .ssh/authorized keys (relative

19

to the pi user’s home directory).

echo ”Key copied” a success indicator returned only if the previous commands
were successful.

Some systems support a command called ssh-copy-id, which does the above, but wasn’t
available on macOS. Here is an example from a FreeBSD unix workstation:

mv@nas:~ % ssh-copy-id -i .ssh/nas2rpi_www.por.ca.pub -p 22443 pi@192.168.60.121

pi@192.168.60.121’s password:

mv@nas:~ %

Now that keys have been configured and transferred, we can disallow password based au-
thentication by editing /etc/ssh/sshd config and setting the line below as shown:

To disable tunneled clear text passwords, change to no here!

PasswordAuthentication no

Restart SSH.

root@www:~# service ssh restart

root@www:~# service ssh status

ssh.service - OpenBSD Secure Shell server

Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled)

Active: active (running) since Thu 2019-03-21 07:06:06 GMT; 19s ago

Process: 1129 ExecStartPre=/usr/sbin/sshd -t (code=exited, status=0/SUCCESS)

Main PID: 1132 (sshd)

CGroup: /system.slice/ssh.service

1132 /usr/sbin/sshd -D

Mar 21 07:06:06 raspberrypi systemd[1]: Starting OpenBSD Secure Shell server...

Mar 21 07:06:06 raspberrypi sshd[1132]: Server listening on 0.0.0.0 port 22443.

Mar 21 07:06:06 raspberrypi sshd[1132]: Server listening on :: port 22443.

Mar 21 07:06:06 raspberrypi systemd[1]: Started OpenBSD Secure Shell server.

Test login with a password:

mv@nas:~ % ssh -p 22443 pi@192.168.60.121

Permission denied (publickey).

Test login with our key identity:

mv@nas:~ % ssh -i .ssh/nas2rpi_www.por.ca -p 22443 pi@192.168.60.121

Enter passphrase for key ’.ssh/nas2rpi_www.por.ca’:

Linux raspberrypi 4.14.98-v7+ #1200 SMP Tue Feb 12 20:27:48 GMT 2019 armv7l

[...]

pi@www:~ $

20

4.7 SSH Client Config File Convenience

It is useful to create an entry in the ˜/.ssh/config file that specifies all the information
required to connect to the web server via ssh. This config file is on the management
workstation and NOT on the RPi.

mv@nas:~ % more .ssh/config

Host rpiwww

Port 22443

IdentityFile ~/.ssh/nas2rpi_www.por.ca

User pi

Hostname 192.168.60.130

Now we can simply type ssh rpiwww to login:

mv@nas:~ % ssh rpiwww

Enter passphrase for key ’/home/mv/.ssh/nas2rpi_www.por.ca’:

[...]

pi@www:~ $

5 Updating and Upgrading

The next priority in the configuration is to bring the system software up to date. Ex-
cellent instructions can be found at Updating and Upgrading Raspbian5.

Once again, to reduce the number of times sudo must be typed, we will simply operate
as the root user for the entire session.

pi@www:~ $ sudo su -

root@www:~#

Update the repositories.

root@www:~# apt-get update

Get:1 http://archive.raspberrypi.org/debian stretch InRelease [25.4 kB]

Hit:2 http://raspbian.raspberrypi.org/raspbian stretch InRelease

Get:3 http://archive.raspberrypi.org/debian stretch/main armhf Packages [222 kB]

Get:4 http://archive.raspberrypi.org/debian stretch/ui armhf Packages [44.4 kB]

Fetched 292 kB in 2s (102 kB/s)

Reading package lists... Done

Now do a ‘dist-upgrade’ which will upgrade the OS and the installed software.

root@www:~# apt-get dist-upgrade

5https://www.raspberrypi.org/documentation/raspbian/updating.md

21

https://www.raspberrypi.org/documentation/raspbian/updating.md

Reading package lists... Done

Building dependency tree

Reading state information... Done

Calculating upgrade... Done

The following packages will be upgraded:

...

59 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Need to get 112 MB of archives.

After this operation, 848 kB of additional disk space will be used.

Do you want to continue? [Y/n] y

...

And one final repository update:

root@www:~# apt-get update

Hit:1 http://archive.raspberrypi.org/debian stretch InRelease

Get:2 http://raspbian.raspberrypi.org/raspbian stretch InRelease [15.0 kB]

Fetched 15.0 kB in 1s (12.7 kB/s)

Reading package lists... Done

We should have an up-to-date system now. Reboot to make sure we’re using the new
software.

6 Apache Web Server

We will install the latest version of apache. For our purposes, we will stick to just the
web server. Software such as PHP or databases are not covered.

root@www:~# apt-cache search apache

[...] Too much output.

Scrolling through the large list, we see that the package is called apache2.

pi@www:~ $ sudo apt-get install apache2

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

apache2-bin apache2-data apache2-utils libapr1 libaprutil1

libaprutil1-dbd-sqlite3 libaprutil1-ldap liblua5.2-0 ssl-cert

Suggested packages:

www-browser apache2-doc apache2-suexec-pristine |

22

apache2-suexec-custom openssl-blacklist

The following NEW packages will be installed:

apache2 apache2-bin apache2-data apache2-utils libapr1

libaprutil1 libaprutil1-dbd-sqlite3 libaprutil1-ldap liblua5.2-0 ssl-cert

0 upgraded, 10 newly installed, 0 to remove and 0 not upgraded.

Need to get 1,953 kB of archives.

After this operation, 6,275 kB of additional disk space will be used.

Do you want to continue? [Y/n] y

[...]

Enabling module mpm_event.

Enabling module authz_core.

Enabling module authz_host.

Enabling module authn_core.

Enabling module auth_basic.

Enabling module access_compat.

Enabling module authn_file.

Enabling module authz_user.

Enabling module alias.

Enabling module dir.

Enabling module autoindex.

Enabling module env.

Enabling module mime.

Enabling module negotiation.

Enabling module setenvif.

Enabling module filter.

Enabling module deflate.

Enabling module status.

Enabling module reqtimeout.

Enabling conf charset.

Enabling conf localized-error-pages.

Enabling conf other-vhosts-access-log.

Enabling conf security.

Enabling conf serve-cgi-bin.

Enabling site 000-default.

Created symlink /etc/systemd/system/multi-user.target.wants/apache2.service

/lib/systemd/system/apache2.service.

Created symlink /etc/systemd/system/multi-user.target.wants/apache-htcacheclean.service

/lib/systemd/system/apache-htcacheclean.service.

Processing triggers for libc-bin (2.24-11+deb9u4) ...

Processing triggers for systemd (232-25+deb9u9) ...

We should look through the configuration directory which is located in /etc/apache2.

23

6.1 Initial Configuration Settings

We have to change the default configuration slightly. The /etc/apache2 directory has a
sites-enabled folder that contains the configuration files for virtual hosts and the default
server in sites-enabled/000-default.conf.

We updated the ServerName and ServerAdmin directives.

root@www:/etc/apache2# cd sites-enabled/

root@www:/etc/apache2/sites-enabled# more 000-default.conf

<VirtualHost *:80>

ServerName www.palaceofretention.ca

ServerAdmin webmaster@palacofretention.ca

DocumentRoot /var/www/html

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

6.2 Test HTML File

Create a unique index.html for the web server and ensure there are no other default
pages being served. The web root directory is located at /var/www/html/.

root@www:~# cd /var/www/html/

root@www:/var/www/html# ls -la

total 20

drwxr-xr-x 2 root root 4096 Mar 21 23:34 .

drwxr-xr-x 3 root root 4096 Mar 21 23:34 ..

-rw-r--r-- 1 root root 10701 Mar 21 23:34 index.html

Move the distribution’s index.html file out of the way.

root@www:/var/www/html# mv index.html ../index.html-dist

Create a new basic index.html file.

root@www:/var/www/html# vi index.html

<html>

<head>

24

<title>Let’s Encrypt Demo Host</title>

</head>

<body>

<p>Do we have a green lock yet?</p>

</body>

</html>

25

6.3 Starting and Testing Apache

Starting up apache2:

root@www:/etc/apache2# service apache2 start

Point a browser at our web server to see what we get:

Figure 1: On the Internet Without a Certificate

We can stop the web server:

root@www:/etc/apache2# service apache2 stop

7 Certbot

According to the official installation instructions6 for apache and debian, we are supposed
to add the backports repository to the apt-get system. This turned out to be unnecessary,
however, as the certbot and its apache plugin are in the normal repositories.

Let’s look for certbot software:

root@www:~# apt-cache search certbot

certbot - automatically configure HTTPS using Let’s Encrypt

letsencrypt - transitional dummy package

python-certbot-doc - client documentation for certbot

python3-certbot - main library for certbot

python-certbot-apache - transitional dummy package

python-certbot-apache-doc - Apache plugin documentation for Certbot

python3-certbot-apache - Apache plugin for Certbot

python-certbot-dns-cloudflare-doc - Documentation for the Cloudflare DNS plugin for Certbot

6https://certbot.eff.org

26

https://certbot.eff.org
https://backports.debian.org/Instructions/

python3-certbot-dns-cloudflare - Cloudflare DNS plugin for Certbot

python-certbot-dns-rfc2136-doc - Documentation for the RFC 2136 DNS plugin for Certbot

python3-certbot-dns-rfc2136 - RFC 2136 DNS plugin for Certbot

python-certbot-nginx - transitional dummy package

python-certbot-nginx-doc - Nginx plugin documentation for Certbot

python3-certbot-nginx - Nginx plugin for Certbot

Install the certbot software and the python 3 version of the certbot-apache plugin.

root@www:~# apt-get install certbot python3-certbot-apache

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

augeas-lenses libaugeas0 python-pyicu python3-acme python3-asn1crypto

python3-augeas python3-certbot python3-cffi-backend python3-configargparse

python3-configobj python3-cryptography python3-future python3-idna

python3-josepy python3-mock python3-openssl python3-parsedatetime

python3-pbr python3-requests-toolbelt python3-rfc3339 python3-setuptools

python3-tz python3-zope.component python3-zope.event python3-zope.hookable

python3-zope.interface

Suggested packages:

augeas-doc python3-certbot-nginx python-certbot-doc augeas-tools

python-acme-doc python-certbot-apache-doc python-configobj-doc

python-cryptography-doc python3-cryptography-vectors python-future-doc

python-mock-doc python-openssl-doc python3-openssl-dbg python-setuptools-doc

The following NEW packages will be installed:

augeas-lenses certbot libaugeas0 python-pyicu python3-acme

python3-asn1crypto python3-augeas python3-certbot python3-certbot-apache

python3-cffi-backend python3-configargparse python3-configobj

python3-cryptography python3-future python3-idna python3-josepy python3-mock

python3-openssl python3-parsedatetime python3-pbr python3-requests-toolbelt

python3-rfc3339 python3-setuptools python3-tz python3-zope.component

python3-zope.event python3-zope.hookable python3-zope.interface

0 upgraded, 28 newly installed, 0 to remove and 43 not upgraded.

Need to get 2,645 kB of archives.

After this operation, 12.5 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

[...]

Setting up python3-certbot (0.28.0-1~bpo9+1) ...

Setting up certbot (0.28.0-1~bpo9+1) ...

Created symlink /etc/systemd/system/timers.target.wants/certbot.timer

27

/lib/systemd/system/certbot.timer.

Setting up python3-certbot-apache (0.28.0-1~bpo9+1) ...

Processing triggers for libc-bin (2.24-11+deb9u4) ...

Test run and show the version of certbot:

root@www:~# certbot --version

certbot 0.28.0

7.1 ACME Protocol

It is important to be aware of and look over the ACME Protocol standard7. A reading
of this document provides background knowledge on how the certbot client and server
exchange information.

7.1.1 HTTP Challenge

We use the HTTP-01 challenge method, since we control the web server directly and it is
the simplest way to get our Let’s Encrypt (LE) certificate. The process goes something
like this:

1. We register with the LE ACME server and receive our account credentials. These
credentials are used for signing the various requests and challenges sent by us.

2. Certbot creates a private key and certificate signing request (CSR). It sends the
CSR to the ACME server.

3. Certbot asks the ACME server for a special token.

4. The server replies with a token.

5. Certbot writes this token to a file in our web server’s document root directory at
/var/www/html/.well-known/acme-challenge/*token*

6. The ACME server requests this file from our web server, and if successful generates
a certificate for us.

7. Certbot retrieves the certificate and places it in a standard directory.

8. Certbot reconfigures apache to use this certificate and, optionally, force TLS use
on our server by configuring apache to redirect port 80 requests to port 443.

7https://tools.ietf.org/html/rfc8555

28

https://tools.ietf.org/html/rfc8555

7.1.2 DNS Challenge

The DNS-01 challenge is similar to the HTTP-01 challenge except that it does not
change any web server configurations directly (hooks are used). It also sends DNS
dynamic updates containing special TXT records to a domain name server. These TXT

records contain the token, which the ACME server retrieves using DNS requests.

This is the only way to get a wildcard certificate for your domain. We won’t be covering
this method in this talk, but this is the method I use for getting LE certificates.

7.2 Location of Files

This short section details where files and software are generally found for this imple-
mentation. The directory /etc/letsencrypt will contain the configuration files and cer-
tificates.

root@www:/etc# ls letsencrypt/

cli.ini

Log files are found in: /var/log/letsencrypt/letsencrypt.log

7.2.1 Certificates

The certificates are stored in the following directory: /etc/letsencrypt/live under a sub-
directory named after the domain.

7.2.2 Systemd files

The certbot service file that systemd uses for the certbot timer unit can be found in
/lib/systemd/system/certbot.service.

The certbot timer file is found in /etc/systemd/system/timers.target.wants/certbot.timer.

7.3 Required Credentials

To register, an optional email address to receive renewal notifications can be pro-
vided.

7.3.1 Email Address: letsencrypt@palacofretention.ca

An email address is optional, but useful, for the LE registration. LE promises that
only certificate expiry warnings and service notifications are used with this email ad-
dress.

29

7.3.2 Let’s Encrypt Account Authorized Key Pair

Let’s Encrypt creates a user account using a public/private key pair. We have the private
key and with it, for example, we sign nonce challenges issued by the LE automation
systems. This key pair is managed by the certbot software and we can take a fairly
hands off approach when dealing with it (i.e. we needn’t do anything except back it
up).

7.3.3 Registration

We’ll need to register with LE and do so with the following command:

certbot register \

--no-eff-email \

--email letsencrypt@palacofretention.ca \

--agree-tos \

--debug

The command’s output:

root@www:/etc/letsencrypt# certbot register \

> --no-eff-email \

> --email letsencrypt@palacofretention.ca \

> --agree-tos \

> --debug

Saving debug log to /var/log/letsencrypt/letsencrypt.log

IMPORTANT NOTES:

- Your account credentials have been saved in your Certbot

configuration directory at /etc/letsencrypt. You should make a

secure backup of this folder now. This configuration directory will

also contain certificates and private keys obtained by Certbot so

making regular backups of this folder is ideal.

We should be ready to issue our certbot commands now.

7.4 Staging

The LE service allows for using staging servers to work out any issues before getting a
real certificate. We will make use of this.

certbot \

--staging \

--dry-run \

--apache \

30

--debug \

-d palaceofretention.ca -d www.palaceofretention.ca

The results of the staging dry-run:

root@www:/etc/letsencrypt# certbot \

> --staging \

> --dry-run \

> --apache \

> --debug \

> -d palaceofretention.ca -d www.palaceofretention.ca

Exiting abnormally:

Traceback (most recent call last):

[...]

certbot.errors.Error: --dry-run currently only works with the

’certonly’ or ’renew’ subcommands (’run’)

Please see the logfile ’/tmp/tmpkcmhqbb_’ for more details.

The error says dry-run isn’t available for staging so we’ll remove the dry-run parameter
and try again:

certbot \

--staging \

--apache \

--debug \

-d palaceofretention.ca -d www.palaceofretention.ca

The results are a staging certificate!

root@www:/etc/letsencrypt# certbot

--staging

--apache

--debug

-d palaceofretention.ca

-d www.palaceofretention.ca

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Plugins selected: Authenticator apache, Installer apache

Enter email address (used for urgent renewal and security notices) (Enter ’c’ to

cancel): letsencrypt@palacofretention.ca

- -

Please read the Terms of Service at

https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf. You must

agree in order to register with the ACME server at

https://acme-staging-v02.api.letsencrypt.org/directory

- -

(A)gree/(C)ancel: a

31

- -

Would you be willing to share your email address with the Electronic Frontier

Foundation, a founding partner of the Let’s Encrypt project and the non-profit

organization that develops Certbot? We’d like to send you email about our work

encrypting the web, EFF news, campaigns, and ways to support digital freedom.

- -

(Y)es/(N)o: n

Obtaining a new certificate

Performing the following challenges:

http-01 challenge for palaceofretention.ca

http-01 challenge for www.palaceofretention.ca

Enabled Apache rewrite module

Waiting for verification...

Cleaning up challenges

Created an SSL vhost at /etc/apache2/sites-available/000-default-le-ssl.conf

Enabled Apache socache_shmcb module

Enabled Apache ssl module

Deploying Certificate to VirtualHost /etc/apache2/sites-available/000-default-le-ssl.conf

Enabling available site: /etc/apache2/sites-available/000-default-le-ssl.conf

Deploying Certificate to VirtualHost /etc/apache2/sites-available/000-default-le-ssl.conf

Please choose whether or not to redirect HTTP traffic to HTTPS, removing HTTP access.

- -

1: No redirect - Make no further changes to the webserver configuration.

2: Redirect - Make all requests redirect to secure HTTPS access. Choose this for

new sites, or if you’re confident your site works on HTTPS. You can undo this

change by editing your web server’s configuration.

- -

Select the appropriate number [1-2] then [enter] (press ’c’ to cancel): 2

Enabled Apache rewrite module

Redirecting vhost in /etc/apache2/sites-enabled/000-default.conf to ssl vhost in /etc/apache2/sites-available/000-default-le-ssl.conf

- -

Congratulations! You have successfully enabled https://palaceofretention.ca and

https://www.palaceofretention.ca

You should test your configuration at:

https://www.ssllabs.com/ssltest/analyze.html?d=palaceofretention.ca

https://www.ssllabs.com/ssltest/analyze.html?d=www.palaceofretention.ca

- -

IMPORTANT NOTES:

- Congratulations! Your certificate and chain have been saved at:

32

/etc/letsencrypt/live/palaceofretention.ca/fullchain.pem

Your key file has been saved at:

/etc/letsencrypt/live/palaceofretention.ca/privkey.pem

Your cert will expire on 2019-06-21. To obtain a new or tweaked

version of this certificate in the future, simply run certbot again

with the "certonly" option. To non-interactively renew *all* of

your certificates, run "certbot renew"

- Your account credentials have been saved in your Certbot

configuration directory at /etc/letsencrypt. You should make a

secure backup of this folder now. This configuration directory will

also contain certificates and private keys obtained by Certbot so

making regular backups of this folder is ideal.

root@www:/etc/letsencrypt#

I guess we were asked for email and terms of service agreements because we are using
the staging servers, and registered with the non-staging servers.

The important things to note are the creation of this file:

root@mail:~# more /etc/apache2/sites-enabled/000-default-le-ssl.conf

<IfModule mod_ssl.c>

<VirtualHost *:443>

#[...]

ServerName www.palaceofretention.ca

ServerAdmin webmaster@palacofretention.ca

DocumentRoot /var/www/html

#[...]

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

#[...]

ServerAlias palaceofretention.ca

Include /etc/letsencrypt/options-ssl-apache.conf

SSLCertificateFile /etc/letsencrypt/live/palaceofretention.ca/fullchain.pem

SSLCertificateKeyFile /etc/letsencrypt/live/palaceofretention.ca/privkey.pem

</VirtualHost>

</IfModule>

Changes were added at the end of the file and include the ServerAlias, Include,
SSLCertificateFile, and SSLCertificateKeyFile directives.

There are also alterations of the sites-enabled/000-default.conf file:

33

root@mail:~# more /etc/apache2/sites-enabled/000-default.conf

<VirtualHost *:80>

#[...]

ServerName www.palaceofretention.ca

ServerAdmin webmaster@palacofretention.ca

DocumentRoot /var/www/html

#[...]

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

#[...]

RewriteEngine on

RewriteCond %{SERVER_NAME} =palaceofretention.ca [OR]

RewriteCond %{SERVER_NAME} =www.palaceofretention.ca

RewriteRule ^ https://%{SERVER_NAME}%{REQUEST_URI} [END,NE,R=permanent]

</VirtualHost>

Changes were added at the end of the file and include the RewriteEngine, RewriteCond,
and RewriteRule directives.

7.5 Production

Since our staging tests were successful, we can get our actual production certificate by
removing the staging argument from the command:

certbot \

--apache \

--debug \

-d palaceofretention.ca -d www.palaceofretention.ca

Results:

root@www:/etc/letsencrypt# certbot

--apache

--debug

-d palaceofretention.ca

-d www.palaceofretention.ca

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Plugins selected: Authenticator apache, Installer apache

Cert not yet due for renewal

34

You have an existing certificate that has exactly the same domains or certificate name you requested and isn’t close to expiry.

(ref: /etc/letsencrypt/renewal/palaceofretention.ca.conf)

What would you like to do?

- -

1: Attempt to reinstall this existing certificate

2: Renew & replace the cert (limit ~5 per 7 days)

- -

Select the appropriate number [1-2] then [enter] (press ’c’ to cancel): 2

Renewing an existing certificate

Performing the following challenges:

http-01 challenge for palaceofretention.ca

http-01 challenge for www.palaceofretention.ca

Waiting for verification...

Cleaning up challenges

Deploying Certificate to VirtualHost /etc/apache2/sites-enabled/000-default-le-ssl.conf

Deploying Certificate to VirtualHost /etc/apache2/sites-enabled/000-default-le-ssl.conf

Please choose whether or not to redirect HTTP traffic to HTTPS, removing HTTP access.

- -

1: No redirect - Make no further changes to the webserver configuration.

2: Redirect - Make all requests redirect to secure HTTPS access. Choose this for

new sites, or if you’re confident your site works on HTTPS. You can undo this

change by editing your web server’s configuration.

- -

Select the appropriate number [1-2] then [enter] (press ’c’ to cancel): 2

Failed redirect for palaceofretention.ca

Unable to set enhancement redirect for palaceofretention.ca

Exiting abnormally:

[...]

File "/usr/lib/python3/dist-packages/certbot_apache/configurator.py", line 1860, in _enable_redirect

"Unable to find corresponding HTTP vhost; "

certbot.errors.PluginError: Unable to find corresponding HTTP vhost; Unable to create one as intended addresses conflict; Current configuration does not support automated redirection

Please see the logfiles in /var/log/letsencrypt for more details.

IMPORTANT NOTES:

- We were unable to set up enhancement redirect for your server,

however, we successfully installed your certificate.

- Congratulations! Your certificate and chain have been saved at:

/etc/letsencrypt/live/palaceofretention.ca/fullchain.pem

Your key file has been saved at:

/etc/letsencrypt/live/palaceofretention.ca/privkey.pem

Your cert will expire on 2019-06-21. To obtain a new or tweaked

version of this certificate in the future, simply run certbot again

35

with the "certonly" option. To non-interactively renew *all* of

your certificates, run "certbot renew"

We received an error regarding the redirect setup, likely due to it already having been
performed by the staging process. This means that we can select option 1 for that
question from now on.

Despite the error, we received our new certificate on our production server.

Figure 2: On the Internet With an Accepted Certificate

7.6 Automatic Renewal

The renew command is used with the certbot program to automatically renew certifi-
cates. Here is a dry-run:

root@www:/etc/letsencrypt# certbot renew --dry-run

Saving debug log to /var/log/letsencrypt/letsencrypt.log

- -

Processing /etc/letsencrypt/renewal/palaceofretention.ca.conf

- -

Cert not due for renewal, but simulating renewal for dry run

Plugins selected: Authenticator apache, Installer apache

Renewing an existing certificate

Performing the following challenges:

http-01 challenge for palaceofretention.ca

http-01 challenge for www.palaceofretention.ca

Waiting for verification...

Cleaning up challenges

36

- -

new certificate deployed with reload of apache server; fullchain is

/etc/letsencrypt/live/palaceofretention.ca/fullchain.pem

- -

- -

** DRY RUN: simulating ’certbot renew’ close to cert expiry

** (The test certificates below have not been saved.)

Congratulations, all renewals succeeded. The following certs have been renewed:

/etc/letsencrypt/live/palaceofretention.ca/fullchain.pem (success)

** DRY RUN: simulating ’certbot renew’ close to cert expiry

** (The test certificates above have not been saved.)

- -

root@www:/etc/letsencrypt#

We note that automatic renewal was installed via a systemd timer unit file that came
with the certbot installation.

root@www:~# more /lib/systemd/system/certbot.timer

[Unit]

Description=Run certbot twice daily

[Timer]

OnCalendar=*-*-* 00,12:00:00

RandomizedDelaySec=43200

Persistent=true

[Install]

WantedBy=timers.target

Therefore, our renewal is already setup.

root@www:~# systemctl status certbot.timer

certbot.timer - Run certbot twice daily

Loaded: loaded (/lib/systemd/system/certbot.timer; enabled; vendor preset: en

Active: active (waiting) since Fri 2019-03-22 21:20:43 PDT; 53min ago

Mar 22 21:20:43 www.palaceofretention.ca systemd[1]: Started Run certbot twice daily

37

7.6.1 Post Renewal Hook

The certbot.service file found in /lib/systemd/system/ has the command that certbot
will use to renew certificates.

We need to make a slight change to this file so we can restart the apache service upon
renewal.

root@www:/lib/systemd/system# more certbot.service

[Unit]

Description=Certbot

Documentation=file:///usr/share/doc/python-certbot-doc/html/index.html

Documentation=https://letsencrypt.readthedocs.io/en/latest/

[Service]

Type=oneshot

ExecStart=/usr/bin/certbot -q renew --post-hook "service apache2 restart"

PrivateTmp=true

We added the post-hook argument. Let’s check the status:

root@www:~# systemctl status certbot.service

Warning: certbot.service changed on disk. Run ’systemctl daemon-reload’ to reload units.

certbot.service - Certbot

Loaded: loaded (/lib/systemd/system/certbot.service; static; vendor preset: enabled)

Active: inactive (dead)

Docs: file:///usr/share/doc/python-certbot-doc/html/index.html

https://letsencrypt.readthedocs.io/en/latest/

Given the warning above, we had better run the systemctl daemon-reload command:

root@www:~# systemctl daemon-reload

root@www:~# systemctl status certbot.service

certbot.service - Certbot

Loaded: loaded (/lib/systemd/system/certbot.service; static; vendor preset: enabled)

Active: inactive (dead)

The inactive (dead) status is of no concern, since the service is called as needed and
not run continuously.

7.7 Backup of letsencrypt Directory

A manual backup, using the tar command (or similar), should be made of the /etc/letsencrypt
folder and copied to another system.

38

root@www:~# tar -cvf /home/pi/letsencrypt-post-production.tar /etc/letsencrypt

Copy the tar file to another system.

Automated backups of the server are also required.

8 Optional: CAA Record in DNS

There exists a mechanism for specifying which certificate authorities can issue certificates
for your domain. It is optional, though prudent, to use this mechanism on your domain.
We do this by creating CAA records in our DNS zone data.

The CAA record lowers the risk that a mis-issued certificate will be created by a conform-
ing Certificate Authority. It maintains that the only CA authorized to create certificates
for palaceofretention.ca is letsencrypt.org.

The main reference for this section is found at Let’s Encrypt’s Certificate Authority
Authorization (CAA) documentation8. A useful resource at SSLMate.com9 allows for
the generation of CAA records. We had the following generated:

palaceofretention.ca. IN CAA 0 issue "letsencrypt.org"

palaceofretention.ca. IN CAA 0 iodef "mailto:letsencrypt@palacofretention.ca"

8https://letsencrypt.org/docs/caa/
9https://sslmate.com/caa/

39

https://letsencrypt.org/docs/caa/
https://letsencrypt.org/docs/caa/
https://sslmate.com/caa/

	Introduction
	Operating System
	Changing Password for User pi
	Changing Password for User root
	``Wi-Fi is disabled'' Message
	Hostname

	Conventions / Working Practices
	Command Line Convenience
	Be the root User (Trust In Yourself)
	Command Aliases for the root User (Your Trust is Misplaced)

	Network
	Addressing and Interfaces
	Special Case MAC Reservation
	The Systemd Way To Set The MAC
	The Wrong Way To Set The MAC

	Disable Unneeded Services
	Firewall (iptables)
	Firewall Policies
	iptables-persistent
	Updated IPv4 Rules

	Plug in the Network Cable
	Secure Shell (SSH)
	Policies
	Startup
	Public / Private Key Authentication

	SSH Client Config File Convenience

	Updating and Upgrading
	Apache Web Server
	Initial Configuration Settings
	Test HTML File
	Starting and Testing Apache

	Certbot
	ACME Protocol
	HTTP Challenge
	DNS Challenge

	Location of Files
	Certificates
	Systemd files

	Required Credentials
	Email Address: letsencrypt@palacofretention.ca
	Let's Encrypt Account Authorized Key Pair
	Registration

	Staging
	Production
	Automatic Renewal
	Post Renewal Hook

	Backup of letsencrypt Directory

	Optional: CAA Record in DNS

