
Source lessons
Learn this first https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dsintro
(https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dsintro)

1.

Then pandas 10-min intro https://pandas.pydata.org/pandas-docs/stable/10min.html
(https://pandas.pydata.org/pandas-docs/stable/10min.html)

2.

miscellaneous pandas and Heidi's data notes
NaN (not a number) is standard replacement for missing data
Could be useful for devices that tend to capture great amounts of missing data
insulin pump example - rows can look very different depending on what was happening
a small portion of a non-blood-glucose event looks like:

15/02/18

17:57:26,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,PLGMControllerState,"BEGIN_INTERNAL_STATE

and a blood-glucose row starts like this:

16/02/18 11:02:25,,,,,,,,,,,,,,,,,,,,,,,,,,,9.1,24.93,,GlucoseSensorData

The raw data is available but quite full of a wide variety of data
The only thing I usually care about in analysis of a day or a week's worth of data is the 9.1 part (blood
glucose)

types of structures

Series

1-D series, labeled
index is axis labels
to create array: s = pd.Series(data, index=index)
if index is omitted, pandas inserts numbered index starting at 0
contents could be a series of numbers, strings, dictionary, ndarray, etc
if series is an ndarray, index must have same length as the series

DataFrame

2-D array, labeled
columns can be different types, much like a spreadsheet
more complex than NumPy's ndarray

In [1]: # usual imports
import numpy as np
import pandas as pd

2Pandas_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10/...

1 of 4 2018-03-14, 8:35 PM

In [2]:

In [3]:

In [4]:

In [5]:

In [6]:

In [7]:

Out[2]: a 0.093096
b 0.115783
c -1.673176
d 1.306117
e 0.330326
dtype: float64

Out[3]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

Out[4]: 0 -0.577213
1 -0.271418
2 1.417345
3 0.136241
4 -0.178144
dtype: float64

Out[5]: a 0.0
b 1.0
c 2.0
dtype: float64

Out[6]: a 5.0
b 5.0
c 5.0
d 5.0
e 5.0
dtype: float64

Out[7]: {'Friday': 30, 'Monday': 34, 'Thursday': 0, 'Tuesday': 12, 'Wednesday': 28}

series example, with (ndarray, index) given
s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
with an ndarray in a Series, data and index need equal length
s

s.index

pd.Series(np.random.randn(5))

dict example
data for labels come from index passed, or failing that, from keys in the dict
d = {'a' : 0., 'b' : 1., 'c' : 2.}
pd.Series(d)

scalar value example
must be given index in .Series call
ie. data = 5; it is repeated for all the index values
pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])

let's make a new, more interesting structure
this one is number of minutes of guitar practice per day
it will become a pandas Series
minutes = {'Monday' : 34, 'Tuesday' : 12, 'Wednesday' : 28, 'Thursday' : 0, 'Friday' :
minutes # note Python doesn't keep order in a dictionary

2Pandas_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10/...

2 of 4 2018-03-14, 8:35 PM

In [8]:

In [9]:

In [10]:

In [11]:

In [12]:

In [13]:

In [14]:

In [15]:

In [16]:

Out[8]: Friday 30
Monday 34
Thursday 0
Tuesday 12
Wednesday 28
dtype: int64

Out[9]: 30

You practiced 34 minutes on Monday.

Out[11]: Friday 30
Monday 34
Thursday 0
dtype: int64

Out[12]: Friday 30
Monday 34
dtype: int64

Out[13]: pandas.core.series.Series

Out[14]: Wednesday 28
Friday 30
dtype: int64

Out[15]: False

Out[16]: True

minutes_s = pd.Series(minutes) # create Series from dictionary
minutes_s

.series() acts like an ndarray
but slicing also slices the index
minutes_s[0] # index 0, isn't necessarily the first item contained in the original dictionary
in this case, the elements appear to be ordered alphabetically, Friday first

luckily we can select or slice by label rather than numerical index
print("You practiced", minutes_s['Monday'], "minutes on Monday.")

minutes_s[:3] # first three values

find Series contents that are above median
the dictionary had 5 days, and the median value is 12
minutes_s[minutes_s > minutes_s.median()] # [] contains slice of data above median
in practice so far, the days of the week appear in order
but to ensure elements are kept in order, a list of tuples would be better

type(minutes_s) # on that note, let's see what type of object this is

minutes_s[[4, 0]] # slice indexes in a certain order
useful here if you knew Wednesday and Friday (index 4 and 0) had guitar lessons

'Saturday' in minutes_s # basic Python applies to a pandas Series too

'Monday' in minutes_s

2Pandas_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10/...

3 of 4 2018-03-14, 8:35 PM

In [17]:

In [18]:

In [19]:

In [20]:

In [21]:

Out[17]: Friday 60
Monday 68
Thursday 0
Tuesday 24
Wednesday 56
dtype: int64

Out[18]: Friday False
Monday True
Thursday False
Tuesday False
Wednesday False
dtype: bool

Out[19]: July 56
August 70
September 80
December 97
Name: Hydro bill, dtype: int64

Out[20]: 'Kilometers walked'

Out[21]: July 56
August 70
September 80
December 97
Name: Kilometers walked, dtype: int64

guitar practice minutes Series can receive arithmetic operations too
what if you vowed to practice twice as much?
minutes_s2 = minutes_s * 2
minutes_s2

how many days are over an hour?
minutes_s2 > 60

a series can accept a list and a name attribute
s = pd.Series([56, 70, 80, 97], index =['July', 'August', 'September', 'December'], name
s

a series can be renamed
s2 = s.rename("Kilometers walked")
s2.name # find out what s2's name is

s2

2Pandas_intro http://localhost:8889/notebooks/Docs/presentation 2018-03-10/...

4 of 4 2018-03-14, 8:35 PM

