Arduino CLI Plugins

Adding plugins to duino_cli

by Dave Hylands

dhylands@gmail.com
https://github.com/dhylands/duino
https://github.com/dhylands/duino plugin _example
https://github.com/dhylands/DuinoEsp32PluginExample

mailto:dhylands@gmail.com
https://github.com/dhylands/duino_cli
https://github.com/dhylands/duino_plugin_example
https://github.com/dhylands/DuinoEsp32PluginExample

Arduino CLI Plugins

This duino_cli program makes use of the entry _point metadata that setup.py creates.

entry_points can be used to create a console script by adding something
like the following tp your setup.py
entry points={

'console scripts': ['cli=duino cli.duino cli:main'],

I

This causees a script called “cli’ to be created when you "pip intall’
your package. The “cli’ script will call the function ‘'main’ from the
“duino_cli.duino_cli" module. Under linux, the script will typically

look like the following:

#!/home/dhylands/Arduino/.direnv/python-3.9.21/bin/python3.9
-*- coding: utf-8 -*-

import re

import sys

from duino cli.duino cli import main

if name == ' main_ ':

sys.argv[0] = re.sub(r' (-script\.pywl|\.exe)?$', '', sys.argv[0])

sys.exit (main())

The line “from duino_cli.duino_cli import main’ is generated using the portion after
“cli=". The name of the file will be the name before the "=". The second to the last

line sets up ‘sys.argv' to be the arguments passed into the “cli” script and the last
line calls the "'main’ function (or whatever fucntion you specified after the colon).

You can also export additional meta-data which can be queried fromwithin your
python program. You can use ‘importlib.metadata.entry_points()’ to get a
dictionary of all entry_points currently installed in your python installation.

The keys from this dictionary come from the “setup.py” script, so the example
console script above would have added an entry to the ‘console_scripts™ key. If
you were to do:

‘importlib.metadata.entry points()['console_scripts'] this would return a tuple, and
one of the entries of that tuple would look something like this:

EntryPoint (name='cli', value='duino cli.duino cli:main', group='console scripts')

You can add your own metadata, which is how the plugin mechanism is
implemented. For the duino_cli program, it looks for metadata with the key
“duino_cli.plugin’. Each entry in the tuple corresponds to a plugin entry point. The
value before the "=" is the name of the plugin, the value after the "=" is considered
to be the name of a class derived from the "CliPluginBase" class.

For example, the following entry:

entry points={
'duino cli.plugin': ['my name=my module.filename base:ClassName']
WRRE

would look for a class named "ClassName' from the filename_base.py file found in
the module named ‘'my_module’

Do a walkthru of https://qgithub.com/dhylands/duino plugin example

Also look at: https://qithub.com/dhylands/DuinoEsp32PluginExample

Do a demo

https://github.com/dhylands/duino_plugin_example
https://github.com/dhylands/DuinoEsp32PluginExample

