
since $t_{1}=t_{3} \& p_{1}=p_{3}$, then $t=2 t_{1}+t_{2}, p=2 p_{1}+p_{2}$ a: acceleration cm/sec ${ }^{2}$
v : velocity in cm/sec after t 1 seconds
t_{1} : time travelling with constant acceleration a
t2 time travelling with constant velocity v
ts time travelling with constant deceleration a
p1, p2, p3 distances covered in cm
p : total distance travelled
Solution of profile:
Note: a, v and t are known quantities
$\mathrm{p}_{1}=1 / 2 \mathrm{at}_{1}{ }^{2}---$ (1)
$\mathrm{p}_{2}=\mathrm{vt} \mathrm{t}_{2}-----(2)$
$\mathrm{p}=2 \mathrm{p}_{1}+\mathrm{p}_{2}$, using (1) and (2)
$p=a t_{1}{ }^{2}+v t_{2}------(3)$, substituting $t_{2}=t-2 t_{1}$ in (3) gives
$\mathrm{p}=\mathrm{at}{ }_{1}{ }^{2}+\mathrm{v}\left(\mathrm{t}-2 \mathrm{t}_{1}\right)$
$p=a t_{1}{ }^{2}+v t-2 v t_{1}-----(4)$, rearranging (3) gives
$\mathrm{at}_{1}{ }^{2}-2 \mathrm{vt}_{1}+(\mathrm{vt}-\mathrm{p})=0$, a quadratic equation in t_{1}
The general quadratic $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ has solution $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, comparing coefficients gives
$\mathrm{t}_{1}=\frac{2 v \pm \sqrt{(-2 v)^{2}-4 a(v t-d)}}{2 a}$
$\mathrm{t}_{1}=\frac{v \pm \sqrt{v^{2}-a(v t-d)}}{a}$, (numerator/denominator has been divided by 2)
$\mathrm{t}_{2}=\mathrm{t}-2 \mathrm{t}_{1}$
Note:
(1) if $v^{2}-a(v t-p)<0$, profile does nor exist (roots are complex)
(2) If a profile exists, it's unique- only one profile

