

I2C

 I2C, sometimes IIC or I22C, stands for inter ICC, stands for inter IC

 2-line bus, clock (SCL) and data (SDA)2-line bus, clock (SCL) and data (SDA)

 Devices individually addressableDevices individually addressable

 Not sensitive to clock speedNot sensitive to clock speed

 No bus power contentionNo bus power contention

Sources

● http://www.robot-electronics.co.uk/i2c-tutorial
● http://www.ti.com/lit/an/slva704/slva704.pdf

http://www.robot-electronics.co.uk/i2c-tutorial

Simple I2C bus

Pull up resistors

Pi has 1.8kΩ pull-up resistors on the SCL and

SDA lines – do not add more, and watch for

pull-up resistors on break-out boards

I2C Bus signals
Start and stop are unique, the only place
where SDA can change while SCL is high

Writing to an I2C device

● Master sends start sequence
● Master sends one byte with device address,

and read/write bit set low (write)
● Slave acknowledges (bit 9 pulled low)
● Master sends device register number
● Slave acknowledges
● Master sends data bytes
● Master sends stop sequence

Writing to an I2C device

Reading from an I2C device

● Master writes to device and register but sends
no data

● Master sends a start signal
● Master sends device address with the

read/write bit set high (ie read)
● Slave acknowledges
● Slave sends data bytes
● Master acknowledges (except last byte)
● Master sends stop sequence

Reading from an I2C device

My System

Pi 2 B 512MB memory

Raspbian Jessie kernal version 4.4

Two 9808 temp sensor boards on
I2C bus

Pi setup

(You may need to install I2C tools

$ sudo apt-get install i2c-tools ◄)

I2C will need to be enabled

$ sudo raspi-config ◄

then Interfacing Options / I2C enable automatic
loading

(Previously this was under Advanced Options)

Then reboot

Pi setup

To test the system, connect an I2C module to
the Pi and enter;

$ sudo i2cdetect -y 1 ◄

($ sudo i2cdetect -y 0 ◄ on older Pi models)

I2cdetect -y 1

Python - setting up to use I2C

define I2C address of sensor

 i2c_addr = 0x18

 # import libraries

 import smbus as smbus

 #configure I2C bus for functions

 i2c = smbus.SMBus(1)

Python – simple I2C read

 # Now read from 9808 unit, register 5, and print
 result

 temp = i2c.read_word_data(i2c_addr, 5)

 print ("9808 at address ", hex (i2c_addr),

 " returned ", bin (temp))

Massaging the data

● Output data from the 9808 sensor is sent as a
two byte word, in big endian order. The Pi
assumes little endian format, so the two bytes
of data have to be separated and flipped.

● The first 3 bits of the 9808 data are flags which
are not needed for temperature measuring, and
the fourth bit is a sign bit for temperatures
below zero.

98
08 temperature binary word

Bit value Bit value

15 T-crit 07 23 OC

14 T-upper 06 22 OC

13 T-lower 05 21 OC

12 Sign 04 20 OC

11 27 OC 03 2-1 OC

10 26 OC 02 2-2 OC

09 25 OC 01 2-3 OC

08 24 OC 00 2-4 OC

Demo1.py essentials

#!/usr/bin/env python

define I2C address of sensor

i2c_addr = 0x18

import libraries

import smbus as smbus

import time

#configure I2C bus for functions

i2c = smbus.SMBus(1) # For original Pi use "i2c = smbus.SMBus(0)"

Now read from 9808 unit, register 5, and print result

while True:

 temp = i2c.read_word_data(i2c_addr, 5)

 print ("9808 at address ", hex (i2c_addr), " returned ", bin (temp))

 time.sleep(1)

Demo1.py output

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.

>>> ================ RESTART================

>>>

9808 at address 0x18 returned 0b11111111000001

9808 at address 0x18 returned 0b11111111000001

9808 at address 0x18 returned 0b100000011000001

9808 at address 0x18 returned 0b11111111000001

9808 at address 0x18 returned 0b11111111000001

9808 at address 0x18 returned 0b11111111000001

9808 at address 0x18 returned 0b11111111000001

Demo2.py

Demo2 reads the 9808 as does
Demo1, strips off the first 3 flags,
checks the fourth flag (temp below
zero) and strips that off, then
calculates the temperature based
on the retained data.

Demo2.py output

9808 at address 0x18 returned 0011111111000001

 reversed bytes = 1100000100111111

Most significant byte of addr1 is 00000001 after stripping first 3 bits

Most significant byte of addr1 is 00000001 after stripping first 4 bits

19.9375 degrees C

9808 at address 0x18 returned 0100000011000001

 reversed bytes = 1100000101000000

Most significant byte of addr1 is 00000001 after stripping first 3 bits

Most significant byte of addr1 is 00000001 after stripping first 4 bits

20.0 degrees C

Demo3.py

Demo3 reads two 9808 units as
does Demo2 and processes the
data in the same way. The only
coding required is to set another
address, and duplicate the code
using this second address.

● i2c_addr = 0x18
● i2c_addr2 = 0x1a

Demo3.py output

9808 at address 0x18 returned 0100000011000001

 reversed bytes = 1100000101000000

Most significant byte of addr1 is 00000001 after stripping first 3 bits

Most significant byte of addr1 is 00000001 after stripping first 4 bits

20.0 degrees C

9808 at address 0x1a returned 0011111111000001

 reversed bytes = 1100000100111111

Most significant byte of addr2 is 00000001 after stripping first 3 bits

Most significant byte of addr2 is 00000001 after stripping first 4 bits

19.9375 degrees C

9808 temperature binary word

Bit value Bit value

15 T-crit 07 23 OC

14 T-upper 06 22 OC

13 T-lower 05 21 OC

12 Sign 04 20 OC

11 27 OC 03 2-1 OC

10 26 OC 02 2-2 OC

09 25 OC 01 2-3 OC

08 24 OC 00 2-4 OC

Demo4.py

This sketch reads register 5 and
separates out the flags.

The 9808 defaults to 0oC for the various
temperature settings – these can be
changed and if necessary locked.

At power up, and ambient about 20oC T is
above T-crit and T-upper, so these flags
are set to 1, and T is also above T-lower,
so this flag is set to 0.

Demo4.py output

9808 at address 0x18 data

flag1 = T-crit 1

flag2 = T-upper 1

flag3 = T-lower 0

19.875 degrees C

9808 at address 0x1a data

flag1 = T-crit 1

flag2 = T-upper 1

flag3 = T-lower 0

19.8125 degrees C

Demo5.py

This sketch writes a new temperature
settings to T-crit and T-upper and then
shows flags and temperature at each
9808 sensor.

On the 9808 the critical temperature is
stored in register 4.

The critical code is;

i2c.write_word_data (i2caddr2, 4,
0b0111000000000001)

Demo5.py output
9808 at address 0x1a data

flag1 = T-crit 0

flag2 = T-upper 0

flag3 = T-lower 0

22.0 degrees C

9808 at address 0x1a data

flag1 = T-crit 0

flag2 = T-upper 1

flag3 = T-lower 0

23.0625 degrees C

9808 at address 0x1a data

flag1 = T-crit 1

flag2 = T-upper 1

flag3 = T-lower 0

26.0625 degrees C

Demo5.py continued

Some code also added to activate the alert
output when the alert condition is exceeded,
and to set the alert condition to high.

Critical code is written to register 1
i2c.write_word_data(i2c_addr2, 1, 0b0000111000000000

Alert output is wired to a LED to switch it on
when the alert goes high

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

